PROGRESS

PROGRESS Final Review Meeting 2-3 August 2018 Sheffield

WP 2 - Propagation of the solar wind from the Sun to L1

Tony Arber, Warwick Keith Bennett, Warwick Bart van der Holst, Michigan Mike Liemohn, Michigan

Objective

From solar surface predict the MHD variables at L1 and 1 A.U. using first principles physics models

Multi-layered coupled modelling

GONG data used to get potential B-field

Use potential field as starting point for AWSoM simulation

At 20 Solar radii data interpolated from AWSoM onto SWIFT grid and solution propagated to 1 AU

Line-of-sight so only 120 degrees used

Line-of-sight so only 120 degrees used

Poor resolution at poles so fitting schemes needed

Line-of-sight so only 120 degrees used

Poor resolution at poles so fitting schemes needed

Project onto longitude-latitude

GONG Data

6 GONG sites take full-disk images every ~minute

A full rotation image can be updated every ~8hrs

Hourly updates need special treatment of western edge weighting

Poles are poorly resolved and need extrapolation...

Potential Field Source Surface (PFSS)

Chose a surface *R*_{ss}, usually at 2.5 *R*_{sun}

On R_{ss} fix the field to be radial to match field structure expected due to solar wind

Potential field between R_{sun} and R_{ss}

$$\mathbf{B} = -\nabla\Phi \qquad \qquad \mathbf{j} = \nabla \times \mathbf{B} = 0$$
$$\nabla^2 \Phi = 0$$

WSA-ENLIL typical results

PROGRESS Project

- Aim to predict MHD variables at 1 A.U. from GONG data
- Replace empirical models of WSA with first principles model
- Allow full vector B-field
- Use 2 temperature MHD
- Shock heating of ions, thermal conduction in electrons

Alfvén Wave Solar Model (AWSoM)

Mathematical Models

$$\begin{split} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) &= 0, \\ \frac{\partial \mathbf{B}}{\partial t} + \nabla \cdot (\mathbf{u} \mathbf{B} - \mathbf{B} \mathbf{u}) &= 0, \\ \frac{\partial (\rho \mathbf{u})}{\partial t} + \nabla \cdot \left(\rho \mathbf{u} \mathbf{u} - \frac{\mathbf{B} \mathbf{B}}{\mu_0}\right) + \nabla \left(P_i + P_e + \frac{B^2}{2\mu_0} + P_A\right) &= -\frac{GM_{\odot}\rho \mathbf{R}}{R^3}, \end{split}$$

Normal MHD + 2T and Alfven pressure

$$P_A = \frac{1}{2}(w_+ + w_-)$$

Mathematical Models

$$\begin{split} \frac{\partial}{\partial t} \left(\frac{P}{\gamma - 1} + \frac{\rho u^2}{2} + \frac{\mathbf{B}^2}{2\mu_0} \right) + \nabla \cdot \left\{ \left(\frac{\rho u^2}{2} + \frac{\gamma P}{\gamma - 1} + \frac{B^2}{\mu_0} \right) \mathbf{u} - \frac{\mathbf{B}(\mathbf{u} \cdot \mathbf{B})}{\mu_0} \right\} = \\ = -(\mathbf{u} \cdot \nabla) P_A + \nabla \cdot (\kappa \cdot \nabla T) - Q_{\text{rad}} + \Gamma_- w_- + \Gamma_+ w_+ - \frac{GM_{\odot}\rho \mathbf{r} \cdot \mathbf{u}}{r^3}, \end{split}$$

Heating from Alfven wave turbulence

$$\Gamma_{\pm} = \frac{2}{L_{\perp}} \sqrt{\frac{w_{\mp}}{
ho}}$$

Mathematical Models

$$\frac{\partial w_{\pm}}{\partial t} + \nabla \cdot \left[(\mathbf{u} \pm \mathbf{V}_A) w_{\pm} \right] + \frac{w_{\pm}}{2} (\nabla \cdot \mathbf{u}) = \mp \mathcal{R} \sqrt{w_- w_+} - \Gamma_{\pm} w_{\pm}$$

Turbulence energy advection and reflection

$$egin{split} \mathcal{R} &= \min\left\{ \sqrt{\left(\mathbf{b} \cdot [
abla imes \mathbf{u}]
ight)^2 + \left[\left(\mathbf{V}_A \cdot
abla
ight) \log V_A
ight]^2}, \max\left(\Gamma_{\pm}
ight)
ight\} imes \ & imes \left[\max\left(1 - rac{I_{\max}}{\sqrt{w_+/w_-}}, 0
ight) - \max\left(1 - rac{I_{\max}}{\sqrt{w_-/w_+}}, 0
ight)
ight], \end{split}$$

- Wave energy densities of counter-propagating transverse Alfvén waves parallel (+) and anti-parallel (-) to magnetic field:

energy reduction in expanding flow

$$\frac{\partial w_{\pm}}{\partial t} + \nabla \cdot \left[(\mathbf{u} \pm \mathbf{V}_A) w_{\pm} \right] + \frac{w_{\pm}}{2} (\nabla \cdot \mathbf{u}) = \mp \mathcal{R} \sqrt{w_- w_+} - \Gamma_{\pm} w_{\pm}$$
Alfvén wave advection wave reflection

- The wave reflection is due to field-aligned component of the Alfvén speed gradient and vorticity. $\Gamma_{\pm} = \frac{2}{L_{\perp}} \sqrt{\frac{w_{\mp}}{\rho}}$
- Phenomenological wave dissipation (Dmitruk et al., 2002):
- Similar to Hollweg (1986), we use a simple scaling law for the transverse correlation $L_{\perp}\sqrt{B} = 150 \text{ km}\sqrt{T}$ length
- $(S_A/B)_{\odot} = 1.1 \times 10^6 \text{ W m}^{-2} \text{ T}^{-1}$ Poynting flux of outward propagating turbulence:

- AWSoM uses stretched spherical grid for solar corona
- Significant grid stretching to grid resolve the upper chromosphere and transition region in addition to artificial transition region broadening
- Due to the very high resolution below 1.15R_{sun} AWSoM is too slow to achieve faster than real-time.

AWSoM-R: Upshift the Inner Boundary

Center for Space Environment Mc

- We use the lower boundary of the AWSoM-R model at $R = 1.15R_s$
- We apply 1D thread solutions along PFSS model field lines to bridge the AWSoM-R model to the chromosphere through the transition region.

- Recognise that between $1R_s$ and $1.15R_s$ u II B and u«v_MHD
- Quasi-steady-state mass, momentum, energy transport and wave turbulence transport is solved along the connecting field line implicitly (1D equations!)
- The speed-up of AWSoM-R is about a factor 200 compared to AWSoM
 Still takes 14 hrs on 128 cores to run from one GONG map

AWSoM - SWIFT Coupling

AWSoM provides MHD variable at 21.5 Rsun

AWSoM is in co-rotating frame but output to buffer in inertial

SWIFT uses the inertial frame buffer MHD values as driver for 2T MHD solution of

$$\begin{split} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) &= 0, \\ \frac{\partial \mathbf{B}}{\partial t} + \nabla \cdot (\mathbf{u} \mathbf{B} - \mathbf{B} \mathbf{u}) &= 0, \\ \frac{\partial (\rho \mathbf{u})}{\partial t} + \nabla \cdot \left(\rho \mathbf{u} \mathbf{u} - \frac{\mathbf{B} \mathbf{B}}{\mu_0}\right) + \nabla \left(P_i + P_e + \frac{B^2}{2\mu_0} + P_A\right) &= -\frac{GM_{\odot}\rho \mathbf{R}}{R^3}, \end{split}$$

Energy equations for each species

$$\frac{\partial}{\partial t} \left(\frac{P}{\gamma - 1} \right) + \nabla \left(\frac{P}{\gamma - 1} \mathbf{u} \right) + P \nabla \mathbf{u} = -\nabla \mathbf{q}_{\mathbf{e}} + H_{shock}$$

Shock heating of ions, thermal conduction for electrons

SWIFT Thermal Conduction

Electron mean-free-path in SW is roughly 1 A.U.

Classical Spitzer-Harm conduction not valid

Instead adopt approach of Hollweg

Maximum heat carried by electrons $\mathbf{q}_{e} = \alpha P_{e} \mathbf{u}_{e}$

$$\frac{\partial}{\partial t} \left(\frac{P_e}{\gamma - 1} \right) + \nabla \cdot \left(\frac{P_e}{\gamma_c - 1} \mathbf{u} \right) + P_e \nabla \cdot \mathbf{u} = 0$$

$$\gamma_c = \frac{\gamma + (\gamma - 1)\alpha}{1 + (\gamma - 1)\alpha}$$

No satisfactory solution to parallel conduction fast enough for a prediction code

The Dakota toolkit provides an interface between simulation codes and iterative analysis methods.[2]

Contains algorithms for optimization, uncertainty quantification (UQ), parameter studies, calibration, and sensitivity/variance analysis.

We perform a Sensitivity Analysis (SA) of AWSoM/SWIFT on the three free parameters, quantifying accuracy of solar wind predictions using the L_1 -norm compared to OMNI data.

$$||L_i|| = \left\{\frac{1}{n}\sum_{i=1}^{n} \left[\boldsymbol{u}_{sim} - \boldsymbol{u}_{OMNI}\right]^i\right\}^{\frac{1}{i}}$$

Best fit L1 results for three Carrington rotations

The best reliable fit was selected as:

Poynting flux per unit B = $1.1e6 \text{ Wm}^{-2} \text{ T}^{-1}$

Stochastic exponent (controls Alfven wave heating) = 0.34

While scaling GONG can improve fit this was not chosen as no physics reason to justify

Allowed us to reduce runtime to 14 hours on 32 cores so fits on a workstation

AWSoM-SWIFT Time Dependent

Time accurate for comparison with OMNI and WSA-ENLIL

Only at real T₃ can SWIFT time accurate simulations start These give time accurate answers from simulation time T₂ SWIFT simulations fast and continued after T₃ with buffer fixed Start a new SWIFT run at T₄ etc.

AWSoM-SWIFT predictions

AWSoM-SWIFT compared to ENLIL

Start time 2018-06-13 23:57

Radial Velocity (km/s)

WSA-ENLIL vs WSA_ENLIL Cone

Plasma Density (/cm³) 15 - EARTH Plasma Density (r²N/cm³ 15 - STEREO A 15 - STEREO B Radial Velocity (km/s) 600 - EARTH STEREO A - STEREO B

2018-06-25 23:00:00

Summary

- AWSoM-SWIFT optimised for full Carrington rotation synoptic GONG magnetograms
- AWSoM speed improved by a factor ~100
- Optimised codes now run on 32 cores in ~12 hours
- Parallel conduction no traceable within fluid model, ad hoc limiter chosen over SNB
- Carrington fit 'good' but predictions from daily synoptic maps 'poor'
- Need long time base to test accuracy of predictions cf. WSA-ENLIL but initial visual inspection show neither approach 'good' cf. Carrington rotation fits