# AWSoM

# Bart van der Holst, M. Liemohm

T





# Alfvén Wave Solar Model (AWSoM)





- **M** AWSoM is split in two coupled framework components: stretched spherical grid for solar corona, cartesian grid for inner heliosphere
- **M** Significant grid stretching to grid resolve the upper chromosphere and transition region in addition to artificial transition region broadening
- **M** Due to the very high resolution below 1.15R<sub>sun</sub> AWSoM is too slow to achieve faster than real-time.

# **AWSoM-R: Upshift the Inner Boundary**

center for Space Environment



**M** We use the lower boundary of the AWSoM-R model at R = 1.15R<sub>s</sub>

M We apply 1D thread solutions along PFSS model field lines to bridge the AWSoM-R model to the chromosphere through the transition region.



**M** Recognize that between  $1R_s$  and  $1.15R_s$  u || **B** and  $u \ll V_{slow}, V_A, V_{fast}$ 

 M Quasi-steady-state mass, momentum, energy transport and wave turbulence transport is solved along the connecting field line implicitly (1D equations!)

**M** The speed-up of AWSoM-R is about a factor 200 compared to AWSoM



### Validation: MHD Quantities at 1AU

CR2123





M Self-similar Gibson-Low flux rope (Gibson & Low, ApJ 493, 460, 1998) to initiate CME in background solar wind

#### **M** Input parameters:

- Location, orientation, field strength, size of flux rope
- Helicity is derived from hemispherical preference (Liu et al., 2014)
- **M** How to determine the parameters from observations ?



# Eruptive Event Generator Gibson Low (EEGGL)

#### Jin et al. ApJ 2017, 834, 173



Weighted center determined via  $sum(\mathbf{r}Br)/sum(Br)$  limited to a polarity of active region C. Schrijver (2007) algorithm for polarity inversion lines (GONG data) 8



# Eruptive Event Generator Gibson Low (EEGGL)

CME Source Region (R = 1.00000 Rs) Solar Latitude (Pixel) Solar Longitude (Pixel)

Blue: Weighted Center of NegativePolarityRed: Weighted Center of PositivePolarityGreen: Polarity Inversion Line

**Recommended Parameters** 

| The Recommended GL FLux Rope Parameters |                |        |
|-----------------------------------------|----------------|--------|
| 947                                     | Latitude:      | 27.46  |
|                                         | Longitude:     | 158.00 |
|                                         | Orientation:   | 276.67 |
|                                         | Radius:        | 0.80   |
|                                         | Bstrength:     | 2.25   |
| St                                      | retch (FIXED): | 0.60   |
| Dist                                    | tance (FIXED): | 1.80   |

Weighted center determined via  $sum(\mathbf{r}Br)/sum(Br)$  limited to a polarity of active region C. Schrijver (2007) algorithm for polarity inversion lines

## **Poloidal Flux vs. Velocity**

for Space Environmen



- **M** Coronagraph determines CME speed (from height-time)
- **M** Speed sets reconnected magnetic flux of flux rope
- M Low speeds (<1500) most likely impacted by wind speed and density variation



IONE

SOLARI

ġ,

-4

# White Light Images

LASCO C3

SOHO LASCO C3 7-Mar-2011 21:13:56.220 UT

SOLAH PADI

6

#### LASCO C2

SOHO LASCO C2 7-Mar-2011 20:07:58.930 UT

0



**STEREO A COR2** 





10

#### Simulation

1.05



# **1 AU Comparison**



• Time shifted by 10 hours to show agreement with magnetic signatures at 1AU (but not the arrival time)

