PROGRESS

PROGRESS Review Meeting, Potsdam 9-11 January 2017

WP2 Status

Propagation of the Solar Wind from the Sun to L1

Tony Arber, Warwick Keith Bennett, Warwick Bart van der Holst, Michigan Mike Liemohn, Michigan

Full timeline for WP2

GONG observations > AWSoM coronal model > SWIFT spherical MHD Inner Heliosphere model Forecast of MHD variables at L1

Deliverables

- M12 Swift conversion to spherical geometry report Approved
- M20 Coupling codes report Submitted 31 August 2016
- M36 Documentation

Project Milestones

MS5 Availability of ASWoM/SWIFT for testing (Month 20)

Work-package Milestones (Tasks)

- M6 Lare3d in spherical and renamed SWIFT
- M9 2T SWIFT & Time accurate AWSoM
- M15 Improved thermal conduction
- M21 Couple AWSoM to SWIFT
- M19-27 Validate coupled model against L1 data
- M25-36 Real time test of L1 predictions
- M36 Manuals

Multi-layered coupled modelling

GONG data used to get potential B-field out to $2.5R_{\odot}$

This PFSS field is then held constant between GONG updates ~ 8 hours

AWSoM co-rotating spherical grid overlaid on this PFSS from $1.15-20R_{\odot}$

Ghost/boundary cell information to drive time-dependent AWSoM by following 1D solution along field-lines to solar surface.

1D field-line solutions update with each AWSoM step although magnetic field stationary

At 20 Solar radii data interpolated from AWSoM onto inertial SWIFT grid and solution propagated to 1 AU

$$\begin{split} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) &= 0, \\ \frac{\partial \mathbf{B}}{\partial t} + \nabla \cdot (\mathbf{u} \mathbf{B} - \mathbf{B} \mathbf{u}) &= 0, \\ \frac{\partial (\rho \mathbf{u})}{\partial t} + \nabla \cdot \left(\rho \mathbf{u} \mathbf{u} - \frac{\mathbf{B} \mathbf{B}}{\mu_0}\right) + \nabla \left(P_i + P_e + \frac{B^2}{2\mu_0} + P_A\right) &= -\frac{GM_{\odot}\rho \mathbf{R}}{R^3}, \end{split}$$

AWSoM SWIFT ignores Alfven wave pressure $R=R_{\odot}\rightarrow L1$

AWSoM SWIFT ignores Alfven wave pressure $R = R_{\odot} \rightarrow L1$

$$\begin{split} \frac{\partial}{\partial t} \left(\frac{P}{\gamma - 1} + \frac{\rho u^2}{2} + \frac{\mathbf{B}^2}{2\mu_0} \right) + \nabla \cdot \left\{ \left(\frac{\rho u^2}{2} + \frac{\gamma P}{\gamma - 1} + \frac{B^2}{\mu_0} \right) \mathbf{u} - \frac{\mathbf{B}(\mathbf{u} \cdot \mathbf{B})}{\mu_0} \right\} = \\ &= -(\mathbf{u} \cdot \nabla) P_A + \nabla \cdot (\kappa \cdot \nabla T) - Q_{\text{rad}} + \Gamma_- w_- + \Gamma_+ w_+ - \frac{GM_{\odot}\rho \mathbf{r} \cdot \mathbf{u}}{r^3}, \end{split}$$

AWSoM SWIFT ignores turbulent drive $R = R_{\odot} \rightarrow L1$

Energy equation including turbulence model

AWSoM SWIFT ignores Alfven wave pressure $R=R_{\odot}\rightarrow L1$

AWSoM SWIFT ignores turbulent drive $R = R_{\odot} \rightarrow L1$

AWSoM only $R = R_{\odot} \rightarrow 20 R_{\odot}$

AWSoM SWIFT ignores Alfven wave pressure $R = R_{\odot} \rightarrow L1$

$$\begin{split} \frac{\partial}{\partial t} \left(\frac{P}{\gamma - 1} + \frac{\rho u^2}{2} + \frac{\mathbf{B}^2}{2\mu_0} \right) + \nabla \cdot \left\{ \left(\frac{\rho u^2}{2} + \frac{\gamma P}{\gamma - 1} + \frac{B^2}{\mu_0} \right) \mathbf{u} - \frac{\mathbf{B}(\mathbf{u} \cdot \mathbf{B})}{\mu_0} \right\} = \\ = -(\mathbf{u} \cdot \nabla) P_A + \nabla \cdot (\kappa \cdot \nabla T) - Q_{\text{rad}} + \Gamma_- w_- + \Gamma_+ w_+ - \frac{GM_{\odot}\rho \mathbf{r} \cdot \mathbf{u}}{r^3}, \end{split}$$

AWSoM SWIFT ignores turbulent drive $R = R_{\odot} \rightarrow L1$

AWSoM only $R = R_{\odot} \rightarrow 20 R_{\odot}$

Start with GONG magnetogram

Construct potential field up to $R_{ss} = 2.5 R$ solar using PFSS method These field-lines only update once every 8 hours with GONG updates

Alfvén Wave Solar Model (AWSoM)

Validation: EUV Images for CR2107

- AWSoM is split in two coupled framework components: stretched spherical grid for solar corona, cartesian grid for inner heliosphere
- Significant grid stretching to grid resolve the upper chromosphere and transition region in addition to artificial transition region broadening
- Due to the very high resolution below 1.15R_{sun} AWSoM is too slow to achieve faster than real-time.

AWSoM-R: Upshift the Inner Boundary

- We use the lower boundary of the AWSoM-R model at $R = 1.15R_s$
- We apply 1D thread solutions along PFSS model field lines to bridge the AWSoM-R model to the chromosphere through the transition region.

- Recognise that between $1R_s$ and $1.15R_s$ u II B and $u \ll V_{slow}, V_A, V_{fast}$
- Quasi-steady-state mass, momentum, energy transport and wave turbulence transport is solved along the connecting field line implicitly (1D equations!)
- The speed-up of AWSoM-R is about a factor 200 compared to AWSoM

Validation: MHD Quantities at 1AU

Boundary Conditions:

- Radial magnetic field is derived from synoptic solar magnetograms
- Poynting flux of outward propagating turbulence:

$$(S_A/B)_{\odot} = 1.1 \times 10^6 \text{ W m}^{-2} \text{ T}^{-1}$$

First time-dependent AWSoM - SWIFT

AWSoM-SWIFT

AWSoM-SWIFT simulation with unscaled magneto gram field strength.

No attempt to account for hot electron or Alfven turbulent compost of ASWoM pressures In SWIFT driving.

On ~60 cores this runs in real time

WSA-ENLIL

No similarity to WSA-ENLIL for the same period.

ASWoM-SWIFT densities too high and velocities too low.

AWSoM - SWIFT compared to OMNI data

These runs clearly show that AWSoM-SWIFT in this form simple fails to give any valuable predictions

AWSoM vs. ENLIL boundary values at 20 $R_{\rm o}$

AWSoM - SWIFT plans & Conclusion

Current ASWoM-SWIFT solutions are undeniably useless.

However these are the first attempt at a coupled solution and the coupling is known to work for full AWSoM steady steady from solar surface to 1 AU.

- Include hot electron component from AWSoM in electron driving pressure in SWIFT
- Add Alfven wave pressure to SWIFT driving pressure
- Test with range of B_{scale} up to 3.75
- Increase SWIFT resolution
- Reproduce the steady state AWSoM solution
- Introduce scheme to prevent heliospheric current sheet reconnection
- Co-rotating frame

All of these ought to be completed by 31 March to keep on schedule.

We are currently assuming that these will fix the problem!