NARMAX Model and Its Application to Forecasting Geomagnetic Indices

Dr Hua-Liang (Leon) Wei

Senior Lecturer in System Identification and Data Analytics
Head of Dynamic Modelling, Data Mining \& Decision Making (3DM) Lab
Complex Systems \& Signal Processing Research Group
Department of Automatic Control \& System Engineering
University of Sheffield
Sheffield, UK

Key Topics

- NARMAX Methodology \diamond NARMAX method
\diamond OFR-ERR algorithm
(orthogonal forward regression and error reduction ratio algorithms)
- Application

Forecast of geomagnetic indices

Part 1

Linear and Nonlinear Models

of
Dynamic Systems

Dynamic System Identification (1)

- Learning From Data

For a system where the model (both the model structure and the associated parameters) are known, one can directly analyse the system using the given model.
If, however, the model structure of the system is unknown, but only some observational data are available, how can we do to uncover the inherent dynamics of the system?

Dynamic System Identification (2)

- A Comprehensive Procedure

ARX and ARMAX models

- ARX model

ARX - Auto-Regressive (AR) with eXogenous inputs

$$
\begin{aligned}
y(k) & =a_{1} y(k-1)+a_{2} y(k-2)+\cdots+a_{p} y(k-p) \\
& +b_{1} u(k-1)+b_{2} u(k-2)+\cdots+b_{q} u(k-q)+e(k)
\end{aligned}
$$

- ARMAX model

ARMAX - Auto-Regressive (AR), Moving Average (MA) with eXogenous inputs

$$
\begin{aligned}
y(k) & =a_{1} y(k-1)+a_{2} y(k-2)+\cdots+a_{p} y(k-p) \\
& +b_{1} u(k-1)+b_{2} u(k-2)+\cdots+b_{q} u(k-q) \\
& +e(k)+c_{1} e(k-1)+c_{2} e(k-2)+\cdots+c_{r} e(k-r)
\end{aligned}
$$

- NARX model

NARX - Nonlinear Auto-Regressive (NAR) with eXogenous inputs

$$
\begin{aligned}
y(k)=f(& y(k-1), y(k-2), \cdots, y(k-p) \\
& u(k-1), u(k-2), \cdots, u(k-q))+e(k)
\end{aligned}
$$

- NARMAX model

NARMAX - Nonlinear Auto-Regressive (NAR), Moving Average (MA) with eXogenous inputs

$$
\begin{aligned}
y(k)=f(& y(k-1), y(k-2), \cdots, y(k-p), \\
& u(k-1), u(k-2), \cdots, u(k-q), \\
& e(k-1), e(k-2), \cdots, e(k-r))+e(k)
\end{aligned}
$$

- AR, ARMA, ARX, and ARMAX are special cases of NARMAX.

Polynomial NARX Model (1)

For the NARX model

$$
y(k)=f(y(k-1), y(k-2), \cdots, y(k-p), u(k-1), u(k-2), \cdots, u(k-q))+e(k)
$$

Let $x_{j}(k)= \begin{cases}y(k-j), & 1 \leq j \leq p \\ u(k-j+p), & p+1 \leq j \leq n, \quad(n=p+q)\end{cases}$

$$
\mathbf{x}(k)=\left[x_{1}(k), x_{2}(k), \cdots, x_{n}(k)\right]^{T}
$$

Then, $y(k)=f(\mathbf{x}(k))+e(k)=f\left(x_{1}(k), x_{2}(k), \cdots, x_{n}(k)\right)+e(k)$
e.g. $\quad y(k)=f(y(k-1), y(k-2), u(k-1))=f\left(x_{1}(k), x_{2}(k), x_{3}(k)\right)$

$$
\begin{aligned}
& =\theta_{0}+\theta_{1} x_{1}(k)+\theta_{2} x_{2}(k)+\theta_{3} x_{3}(k) \\
& +\theta_{4} x_{1}(k) x_{1}(k)+\theta_{5} x_{1}(k) x_{2}(k)+\theta_{6} x_{1}(k) x_{3}(k) \\
& +\theta_{7} x_{2}(k) x_{2}(k)+\theta_{8} x_{2}(k) x_{3}(k)+\theta_{9} x_{3}(k) x_{3}(k) \\
& +e(k) \\
&)=\theta_{0}+\sum_{i=1}^{3} \theta_{i_{1}} x_{i_{1}}(k)+\sum_{i_{1}=1}^{3} \sum_{i_{2}=i_{1}}^{3} \theta_{i_{1} i_{2}} x_{i_{1}}(k) x_{i_{2}}(k)+e(k)
\end{aligned}
$$

Polynomial NARX Model (2)

- One approach to approximate the unknown function f is

$$
\begin{aligned}
y(k)= & \hat{f}\left(x_{1}(k), x_{2}(k), \cdots, x_{n}(k)\right)+e(k) \\
= & f_{0}+\sum_{1 \leq i \leq n} f_{i}\left(x_{i}(k)\right)+\sum_{1 \leq i \leq j \leq \leq} f_{i j}\left(x_{i}(k), x_{j}(k)\right)+\cdots \\
& +\sum_{1 \leq i_{1} \leq \cdots i_{i} \leq n} f_{i_{i} i_{i} \cdots i_{\ell}}\left(x_{i_{1}}(k), x_{i_{2}}(k), \cdots, x_{i_{\ell}}(k)\right)+e(k)
\end{aligned}
$$

- Here the aim is to approximate a high-dimensional function f using a set of lower dimensional functions.

Polynomial NARX Model (3)

- Polynomial approximation

$$
\begin{aligned}
y(k) & =\hat{f}\left(x_{1}(k), x_{2}(k), \cdots, x_{n}(k)\right)+e(k) \\
& =\theta_{0}+\sum_{i_{1}=1}^{n} \theta_{i_{1}} x_{i_{1}}(k)+\sum_{i_{1}=1}^{n} \sum_{i_{2}=i_{1}}^{n} \theta_{i_{1} i_{2}} x_{i_{1}}(k) x_{i_{2}}(k)+\cdots \\
& +\sum_{i_{1}=1}^{n} \cdots \sum_{i_{\ell}=i_{\ell-1}}^{n} \theta_{i_{i_{2}} \cdots i_{\ell}} x_{i_{1}}(k) x_{i_{2}}(k) \cdots x_{i_{\ell}}(k)+e(k)
\end{aligned}
$$

- An example (a model for Dst prediction)
$\operatorname{Dst}(k)=0.02486+0.98368 D s t(k-1)$

$$
-0.92130[D s t(k-1)]^{3} \times V B s(k-1)
$$

$$
+0.51936[\operatorname{Dst}(k-1)] \times[\operatorname{Dst}(k-1)]^{2} \times V B s(k-2)
$$

$$
-1.25977 D s t(k-1) \times[V B s(k-1)]^{2} \times V B s(k-2)
$$

HL Wei, SA Billings \& MA Balikhin, J. Geophysical Research-Space Physics, 109, A07212, 2004.

Polynomial NARX Model (4)

- Some KEY issues in NARX modelling
- How to determine the model order?

$$
y(k)=f(y(k-1), y(k-2), \cdots, y(k-p), u(k-1), u(k-2), \cdots, u(k-q))+e(k)
$$

- How to chose model variables?
- How to determine nonlinear degree of the model?

$$
y(k)=\theta_{0}+\sum_{i_{i}=1}^{n} \theta_{i_{i}} x_{i_{1}}(k)+\sum_{i_{i}=1}^{n} \sum_{i_{2}=i_{i}}^{n} \theta_{i_{i}} x_{i_{i}}(k) x_{i_{2}}(k)+\cdots
$$

- How to determine model terms/regressors?
- How to determine model size/length/complexity?

Polynomial NARX Model (5)

- Advantages of the polynomial NARX model
- Widely applicable and applied
- Tractable: linear-in-the-parameters form; easy to operate
- Computational efficient: easy to compute
- Transparent: significant model terms and variables are clearly known
- Less sensitive to noise and thus usually generalises well
- Physically interpretable: can be related back to the underlying system
- Frequency domain analysis of nonlinear systems is allowable by mapping a time-domain model into the frequency domain

Challenges of Black-Box Modelling for Dynamic Systems

- Model variable selection and determination
- Model structure determination
- Model term selection
- Model parameter estimation
- Model validity test
- Model interpretability

Part 2

NARMAX Model Identification and Construction

Part 2A Orthogonal Basis

Signal Approximation with Orthogonal Regression

Let $x_{1}, x_{2}, \ldots, x_{m}$ be m orthogonal vectors defined in n dimensional space R^{n}, and y a signal in R^{n}.
Assuming that we want to approximate y using $x_{1}, x_{2}, \ldots, x_{m}$, a conventional approach is:

$$
y=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{m} x_{m}+e
$$

where $c_{1}, c_{2}, \ldots, c_{m}$ are parameters and e is approximation error.
Note that e is assumed to be independent of $x_{1}, x_{2}, \ldots, x_{m}$.
We can show that $\left\langle x_{1}, y\right\rangle=c_{1}\left\langle x_{1}, x_{1}\right\rangle \Rightarrow c_{1}=\frac{\left\langle x_{1}, y\right\rangle}{\left\langle x_{1}, x_{1}\right\rangle}=\frac{x_{1}^{T} y}{x_{1}^{T} x_{1}}$,

$$
\begin{aligned}
& \left\langle x_{2}, y\right\rangle=c_{2}\left\langle x_{2}, x_{2}\right\rangle \Rightarrow c_{2}=\frac{\left\langle x_{2}, y\right\rangle}{\left\langle x_{2}, x_{2}\right\rangle}=\frac{x_{2}^{T} y}{x_{2}^{T} x_{2}}, \ldots \\
& \left\langle x_{m}, y\right\rangle=c_{m}\left\langle x_{m}, x_{m}\right\rangle \Rightarrow c_{m}=\frac{\left\langle x_{m}, y\right\rangle}{\left\langle x_{m}, x_{m}\right\rangle}=\frac{x_{m}^{T} y}{x_{m}^{T} x_{m}},
\end{aligned}
$$

Projection onto Orthogonal Vectors(2)웅

We can also show that
$\langle y, y\rangle=c_{1}^{2}\left\langle x_{1}, x_{1}\right\rangle+c_{2}^{2}\left\langle x_{2}, x_{2}\right\rangle+\ldots+c_{m}^{2}\left\langle x_{m}, x_{m}\right\rangle+\langle e, e\rangle$
That is,

$$
y^{T} y=c_{1}^{2} x_{1}^{T} x_{1}+c_{2}^{2} x_{2}^{T} x_{2}+\ldots+c_{m}^{2} x_{m}^{T} x_{m}+e^{T} e
$$

or

$$
\|y\|^{2}=c_{1}^{2}\left\|x_{1}\right\|^{2}+c_{2}^{2}\left\|x_{2}\right\|^{2}+\ldots+c_{m}^{2}\left\|x_{m}\right\|^{2}+\|e\|^{2}
$$

So,

$$
\frac{\|e\|^{2}}{\|y\|^{2}}=1-c_{1}^{2} \frac{\left\|x_{1}\right\|^{2}}{\|y\|^{2}}-c_{2}^{2} \frac{\left\|x_{2}\right\|^{2}}{\|y\|^{2}}-\ldots-c_{m}^{2} \frac{\left\|x_{m}\right\|^{2}}{\|y\|^{2}}
$$

Projection onto Orthogonal Vectors(3)

$$
\frac{\|e\|^{2}}{\|y\|^{2}}=1-c_{1}^{2} \frac{\left\|x_{1}\right\|^{2}}{\|y\|^{2}}-c_{2}^{2} \frac{\left\|x_{2}\right\|^{2}}{\|y\|^{2}}-\ldots-c_{m}^{2} \frac{\left\|x_{m}\right\|^{2}}{\|y\|^{2}}
$$

Recalling that $c_{k}=\frac{x_{k}^{T} y}{x_{k}^{T} x_{k}}=\frac{x_{k}^{T} y}{\left\|x_{k}\right\|^{2}}, k=1,2, . ., m$, we have

$$
\begin{aligned}
\frac{\|e\|^{2}}{\|y\|^{2}} & =1-\left(\frac{x_{1}^{T} y}{\left\|x_{1}\right\|^{2}}\right)^{2} \frac{\left\|x_{1}\right\|^{2}}{\|y\|^{2}}-\left(\frac{x_{2}^{T} y}{\left\|x_{2}\right\|^{2}}\right)^{2} \frac{\left\|x_{2}\right\|^{2}}{\|y\|^{2}}-\ldots-\left(\frac{x_{m}^{T} y}{\left\|x_{m}\right\|^{2}}\right)^{2} \frac{\left\|x_{m}\right\|^{2}}{\|y\|^{2}} \\
& =1-\frac{\left(x_{1}^{T} y\right)^{2}}{\left\|x_{1}\right\|^{2}\|y\|^{2}}-\frac{\left(x_{2}^{T} y\right)^{2}}{\left\|x_{2}\right\|^{2}\|y\|^{2}}-\ldots-\frac{\left(x_{m}^{T} y\right)^{2}}{\left\|x_{m}\right\|^{2}\|y\|^{2}} \\
& =1-E R R_{1}-E R R_{2}-\cdots-E R R_{m}
\end{aligned}
$$

where $\operatorname{ERR}_{k}(k=1,2 \ldots, m)$ is called the k th Error Reduction
Ratio, indicating how much (in percentage) of the approximation error can be reduced by the k th vector.
Note that $0 \leq \mathrm{ERR}_{k} \leq 1$, and $\sum \mathrm{ERR}_{k} \leq 1$

A simple example

$$
\begin{aligned}
& y=\left[\begin{array}{l}
1 \\
2 \\
5
\end{array}\right], \quad x_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad x_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad x_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
& c_{1}=\frac{x_{1}^{T} y}{x_{1}^{T} x_{1}}=1, \quad c_{2}=\frac{x_{2}^{T} y}{x_{2}^{T} x_{2}}=2, \quad c_{3}=\frac{x_{3}^{T} y}{x_{3}^{T} x_{3}}=5,
\end{aligned}
$$

So, $y=x_{1}+2 x_{2}+5 x_{3}$
$E R R_{1}=\frac{\left(x_{1}^{T} y\right)^{2}}{\left\|x_{1}\right\|^{2}\|y\|^{2}}=\frac{1}{30}=0.0333 \quad x_{1}$ accounts for 3.33% of the $E R R_{2}=\frac{\left(x_{2}^{T} y\right)^{2}}{\left\|x_{2}\right\|^{2}\|y\|^{2}}=\frac{4}{30}=0.1333$ $E R R_{3}=\frac{\left(x_{3}^{T} y\right)^{2}}{\left\|x_{3}\right\|^{2}\|y\|^{2}}=\frac{25}{30}=0.8333$
variation in y
x_{2} accounts for 13.33% of the variation in y
x_{3} accounts for 83.33% of the variation in y

Projection onto Orthogonal Vectors(5)

Question: Knowing x_{1}, x_{2}, x_{3} and y, and assuming that we want to choose only one from x_{1}, x_{2}, x_{3} that best approximates y, which one we would use?

What if we use only two?

$$
y=\left[\begin{array}{l}
1 \\
2 \\
5
\end{array}\right], x_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], x_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], x_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

An alternative question: Assuming that we want to choose a minimal subset of $\left\{x_{1}, x_{2}, x_{3}\right\}$ that accounts for no less than 80% of variation in y (i.e. 'overall ERR > 80% '), which and how many vector(s) should be used?
What if we want to achieve approximation that accounts for no less than 90% of the variation in y ?

Part 2B Non-orthogonal Basis

Forward Orthogonal Regression

We use a simple example to illustrate the forward orthogonal process. We now have 3 linearly independent vectors, together with a $4^{\text {th }}$ observed signal:

- Step 1.

$$
X=\left\{\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right],\left[\begin{array}{r}
-1 \\
0 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}, \quad y=\left[\begin{array}{l}
1 \\
2 \\
5
\end{array}\right] .
$$

Recalling the definition of the Error Reduction Ratio (ERR), we check the ERR index for each of the 3 vectors in S :

$$
\begin{aligned}
& \operatorname{err}_{1}=\frac{\left(x_{1}^{T} y\right)^{2}}{\left\|x_{1}\right\|^{2}\|y\|^{2}}=\frac{5}{6}=0.8333 \\
& \operatorname{err}_{2}=\frac{\left(x_{2}^{T} y\right)^{2}}{\left\|x_{2}\right\|^{2}\|y\|^{2}}=\frac{27}{50}=0.54 \\
& \operatorname{err}_{3}=\frac{\left(x_{3}^{T} y\right)^{2}}{\left\|x_{3}\right\|^{2}\|y\|^{2}}=\frac{5}{6}=0.8333
\end{aligned}
$$

So, we choose either the $1^{\text {st }}$ or $3^{\text {rd }}$ vector.

- Step 2. We choose x_{3} as the first orthogonal vector:

$$
q_{1}=x_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad \text { (we know that } E R R_{1}=83.33 \% \text {) }
$$

Step 2 searches for a new vector to join q_{1}.

If x_{1} joins q_{1}, we have
$q_{1}=x_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$,
$v=x_{1}-\frac{q_{1}^{T} x_{1}}{q_{1}^{T} q_{1}} q_{1}=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]-\frac{2}{1}\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$,
$\operatorname{err}=\frac{\left(v^{T} y\right)^{2}}{\left(v^{T} v\right)\left(y^{T} y\right)}=\frac{25}{150}=16.67 \%$

If x_{2} joins q_{1}, we have

$$
q_{1}=x_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],
$$

$$
v=x_{2}-\frac{q_{1}^{T} x_{2}}{q_{1}^{T} q_{1}} q_{1}=\left[\begin{array}{r}
-1 \\
0 \\
2
\end{array}\right]-\frac{2}{1}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{r}
-1 \\
0 \\
0
\end{array}\right],
$$

$$
\operatorname{err}=\frac{\left(v^{T} y\right)^{2}}{\left(v^{T} v\right)\left(y^{T} y\right)}=\frac{1}{30}=3.33 \%
$$

Forward Orthogonal Regression (3)

Now we have 2 orthogonal vectors:

$$
q_{1}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad\left(\mathrm{ERR}_{1}=83.33 \%\right), q_{2}=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right] \quad\left(\mathrm{ERR}_{2}=16.67 \%\right)
$$

Since $\mathrm{ERR}_{1}+\mathrm{ERR}_{2}=100 \%$, meaning that the two vectors q_{1} and q_{2} totally explain the variation of y. So, there is no need to search further.

We can work out that,

$$
X=\left\{\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right],\left[\begin{array}{r}
-1 \\
0 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}, \quad y=\left[\begin{array}{l}
1 \\
2 \\
5
\end{array}\right] .
$$

$$
y=5 q_{1}+q_{2} \text { and } y=x_{1}+3 x_{3}
$$

- A general idea

Let $x_{1}, x_{2}, \ldots, x_{m}$ be m vectors defined in n-dimensional space R^{n}; and y a signal in R^{n}.

Note that $x_{1}, x_{2}, \ldots, x_{m}$ can be linearly dependent or there is some multicollinearity among them.

We want to find an optimal or sub-optimal subset S of $\left\{x_{1}, x_{2}\right.$, $\left.\ldots, x_{m}\right\}$, such that y can be satisfactorily represented by elements of S.

Note that for the above scenario, the ordinary least squares method may not work well.

Forward Orthogonal Regression (5)

- A general procedure

- Step 1. Calculate ERR index for each of $x_{1}, x_{2}, \ldots, x_{m}$:

$$
\operatorname{err}_{k}=\frac{\left(x_{k}^{T} y\right)^{2}}{\left\|\mid x_{k}\right\|^{2}\|y\|^{2}}, k=1,2, \ldots, m
$$

Choose the vector that has the maximum 'err' as the $1^{\text {st }}$ orthogonal vector $\left(q_{1}\right)$.

- Step 2. Orthogonalize each of $x_{1}, x_{2}, \ldots, x_{m}$ (except that selected in Step 1) with q_{1}; work out ERR value for each of the orthogonalized vectors. Choose the one that with the maximum 'err' as the $2^{\text {nd }}$ orthogonal vector $\left(q_{2}\right)$.
- Step 3,4, Repeat the same process as in Step 2, until a satisfactory approximation is achieved.
The above procedure is called orthogonal forward regression (OFR) or orthogonal least squares (OLS) algorithm

Suppose we have a data tabular at the bottom, and we want to find a general regression model to characterize the dependent relation of y on the three independent variables x_{1}, x_{2}, x_{3} :

X_{1}	X_{2}	X_{3}	Y	Ordinary least squares failed to detect the correct model:$\begin{array}{lll} \beta_{0}=0, & \beta_{1}=-0.2121, & \beta_{2}=0, \\ \beta_{3}=2.5682, \\ \beta_{4}=0, & \beta_{5}=0, & \beta_{6}=-0.1212, \\ \beta_{7}=0, & \beta_{8}=-0.5455, & \beta_{9}=-0.0227 . \end{array}$
2	2	8	8	
0	0	0	0	
1	2	5	6	
1	1	2	3.5	The OFR algorithm, however, perfectly detect the
2	2	8	8	orrect model (with only 3 terms), step by step:
1	1	2	3.5	tep 1: x_{1} was selected ($\mathrm{ERR}=96.154 \%, \beta_{1}=1$)
3	2	13	10	Step 2: x_{2} was selected ($\left.\mathrm{ERR}=3.693 \%, \beta_{2}=2\right)$
0	1	1	2	Step 3: $x_{1} x_{2}$ was selected (ERR= $\left.0.153 \%, \beta_{5}=1 / 2\right)$

Part 2C Dictionary Learning

For NARXMAX Model Identification

Dictionary Learning

In NARMAX model identification, we need to design a dictionary in advance. We use a simple example to illustrate the basic idea:

$$
y(k)=f(y(k-1), y(k-2), u(k-1))+e(k)
$$

Define: $D_{0}=\{1\}$,

$$
\begin{aligned}
& f(y(k-1), y(k-2), u(k-1))+e(k) \\
& D_{0}=\{1\}, \\
& D_{1}=\{y(k-1), y(k-2), u(k-1)\}, \\
& D_{2}=\left\{\begin{array}{l}
y(k-1) y(k-1) \\
y(k-1) y(k-2) \\
y(k-1) u(k-1) \\
y(k-2) y(k-2) \\
y(k-2) u(k-1) \\
u(k-1) u(k-1)
\end{array}\right\},
\end{aligned} \quad D_{3}=\left\{\begin{array}{l}
y(k-1) y(k-1) y(k-1) \\
y(k-1) y(k-1) y(k-2) \\
y(k-1) y(k-1) u(k-1) \\
y(k-1) y(k-2) y(k-2) \\
y(k-1) y(k-2) u(k-1) \\
y(k-1) u(k-1) u(k-1) \\
y(k-2) y(k-2) y(k-2) \\
y(k-2) y(k-2) u(k-1) \\
y(k-2) u(k-1) y(k-1) \\
u(k-1) u(k-1) u(k-1)
\end{array}\right\}, ~ \$
$$

We can use D_{0}, D_{1}, D_{2} and/or D_{3} to create vector sets, and then apply the OFR algorithm to select important vectors (ie model terms, one by one), and build a compact or sparse model.

Part 3

NARMAX Model Application

 forForecasting Geomagnetic Indices

Part 3A

Kp Index Prediction

Kp Index Prediction (1)

Variable	Description	Input or output
V	Solar wind speed [km/s]	
Bs	Southward interplanetary magnetic field $[\mathrm{nT}]$	
VBs	solar wind rectified electric field [mv/m] [VBs=V•Bs/1000]	Input
p	Solar wind pressure [nPa]	
$\mathrm{p}^{1 / 2}$	Square root of solar wind pressure	Output
Kp	Kp index (variable of interest)	

- Training data: Hourly data, January - June, 2000
- Test data: Hourly data, July - December, 2000

The identified model:

$$
\begin{aligned}
\mathrm{Kp}(\mathrm{k}) & =0.325543 \mathrm{Kp}(\mathrm{k}-3)-0.000043 \mathrm{~V}(\mathrm{k}-1) \cdot \mathrm{p}^{1 / 2}(\mathrm{k}-1)+0.673034 \mathrm{Bs}(\mathrm{k}-1) \\
& -0.164093 \mathrm{Bs}(\mathrm{k}-1) \cdot \mathrm{p}^{1 / 2}(\mathrm{k}-1)-0.000003 \mathrm{~V}^{2}(\mathrm{k}-1) \\
& +0.000217 \mathrm{~V}(\mathrm{k}-1) \cdot \mathrm{Bs}(\mathrm{k}-2) \quad-0.006701 \mathrm{Bs}(\mathrm{k}-1) \cdot \mathrm{Bs}(\mathrm{k}-2) \\
& -0.005810 \mathrm{Bs}(\mathrm{k}-1) \cdot \mathrm{p}(\mathrm{k}-2) \\
& +2.179360+0.753122 \mathrm{p}^{1 / 2}(\mathrm{k}-1) \\
& +0.006105 \mathrm{~V}(\mathrm{k}-1)-0.387292 \mathrm{VBs}(\mathrm{k}-1)+0.136271 \mathrm{VBs}(\mathrm{k}-1) \cdot \mathrm{p}^{1 / 2}(\mathrm{k}-1)
\end{aligned}
$$

Kp Index Prediction (2)

Kp Index Prediction (3)

Comparison between the 3-hour ahead prediction of the Kp index during a 30day interval between September and October of year 2000. Red line indicates the model predicted Kp values.

Part 3B

Forecasting the daily averaged flux electrons with energy > 2 MeV at Geostationary orbit

Forecast of Electron Flux (1) at the Radiation Belt

As a case study, we use the following data to train models:
Output variable:
Daily data of 120 days ($22^{\text {nd }}$ May $1995-17^{\text {th }}$ Sept 1995) for electron flux at the radiation belt $(>2 \mathrm{MeV})$.
(data were from GOES $7 \& 8$ satellites)
Input variables:
Hourly data of 120 days ($22^{\text {nd }}$ May $1995-17^{\text {th }}$ Sept 1995)
$V_{s w}$ (solar wind velocity)
$V B s$ (solar wind rectified electric field)
Pdyn (flow pressure)
Sym-H index (symmetric part of disturbance [nT])
Asy-H index (asymmetric part of disturbance [nT])
(data were from ACE \& WIND spacecraft and geomagnetic indices)

Forecast of Electron Flux (2)

at the Radiation Belt

Our objective is to build models from these hourly and daily data, and use the models to forecast the future behaviour of electron flux.

Data Observed Today and	
Predict Tomorrow's Some Previous Days	Behaviour

Hourly recorded

$V_{s w}$ (solar wind velocity)
VBs (rectified electric field)
Pdyn (flow pressure)
Sym-H index
Asy-H index
Daily recorded Electrons
Flux of
electrons
(> 2MeV)

Forecast of Electron Flux (3)

- MISO NARX Model
- We have 5 input variables (V, VBs, P, Sym-H, Asy-H), and 1 output variable (electron flux).
- We use previous values of these input and output variables to build models. Specifically, we use the values below to predict the future value of electron flux:

Flux (d -3), Flux (d-2), Flux (d-1), Flux (d), $V(d-3), \quad V(d-2), \quad V(d-1), \quad V(d)$,
$\operatorname{VBs}(d-3), \quad \operatorname{VBs}(d-2), \quad \operatorname{VBs}(d-1), \quad \operatorname{VBs}(d)$, Flux $(d+1)$ $P(d-3), \quad P(d-2), \quad P(d-1), \quad P(d)$,
SysH(d-3), SysH(d-2), SysH(d-1), SysH(d), AsyH (d -3$)$, AsyH ($d-2)$, AsyH (d -1$)$, AsyH (d),

Forecast of Electron Flux (4) at the Radiation Belt

We use $V_{s w}, V B s, P d y n, S y m-H$, and Asy-H as inputs, and electron flux (maxima) as output (shown below).

The daily electron flux data: Day 141-260 of year 1995 (22 May-17 Sept).

- 141-243 (22 May-31 Aug) for model identification
- 244-260 (01-17 Sept) for model test

Forecast of Electron Flux (5) at the Radiation Belt

We consider the following multiple input NARX model:

$$
\begin{array}{rccc}
y(k)=f[y(k-1), & y(t-2), & y(k-3), & y(k-4), \\
u_{1}(k-1), & u_{1}(k-2), & u_{1}(k-3), & u_{1}(k-4), \\
u_{2}(k-1), & u_{2}(k-2), & u_{2}(k-3), & u_{2}(k-4), \\
\ldots & \ldots & \ldots & \ldots \\
u_{5}(k-1), & u_{5}(k-2), & u_{5}(k-3), & \left.u_{5}(k-4)\right]+e(k)
\end{array}
$$

where

$$
\begin{aligned}
& y(k)=f l u x(k) \\
& u_{1}(k)=V(k) \\
& u_{2}(k)=V B s(k) \\
& u_{3}(k)=\operatorname{Pdyn}(k) \\
& u_{4}(k)=\operatorname{SysH}(k) \\
& u_{5}(k)=\operatorname{AsyH}(k),
\end{aligned}
$$

Forecast of Electron Flux (6) at the Radiation Belt

We have applied the OFR-ERR method to the 103 training data (day141-243, 1995), and obtained a simple model containing 6 model terms:

Index	Model term	Parameter	Contribution ERR (100\%)
1	Flux(d-1)	0.71090335	92.8682
2	$\mathrm{~V}(\mathrm{~d}-3)^{*} \mathrm{AsyH}(\mathrm{d}-1)$	0.00008062	0.9910
3	$\mathrm{SysH}(\mathrm{d}-4)^{*} \mathrm{AsyH}(\mathrm{d}-1)$	0.00011492	0.4564
4	$\mathrm{VBs}(\mathrm{d}-3)^{*} \mathrm{VBs}(\mathrm{d}-4)$	0.00000116	0.2947
5	SysH(d-4)	0.03559492	0.1115
6	SysH(d-4)* Pdyn(d-4)	-0.00384037	0.1433

Forecast of Electron Flux (7)

 in the Radiation Belt

Forecast of Electron Flux (9) at the Radiation Belt
Scatter Plo

Concluding Remarks

\diamond The NARMAX and OFR-ERR Methods

- The orthogonal forward regression (OFR) and error reduction ratio (ERR) algorithms provide a powerful tool for compact nonlinear model building from data.
- NARMAX models are transparent and can be written down. This is highly desirable in many scenarios.
- NARMAX method can be used not only for prediction but also more importantly for system analysis. For example, it can detect how the system output relates to the inputs, and how the inputs interact with other.

Acknowledgement

We gratefully acknowledge that part of this work was supported by:

- EC Horizon 2020 Research and Innovation Action Framework Programme (Grant No 637302 and grant title "PROGRESS").
- Engineering and Physical Sciences Research Council (EPSRC) (Grant No EP/I011056/1)
- EPSRC Platform Grant (Grant No EP/H00453X/1)

EPSRC
Engineering and Physical Sciences
Research Council
gineering and

