

Fo	Forward Orthogonal Regression (6)						
• Why Using OFR rather than ordinary least squares? Suppose we have a data tabular at the bottom, and we want to find a general regression model to characterize the dependent relation of y on the three independent variables x_1, x_2, x_3 : $y=\beta_0+\beta_1x_1+\beta_2x_2+\beta_3x_3+\beta_4x_1x_1+\beta_5x_1x_2+\beta_6x_1x_3+\beta_7x_2x_2+\beta_8x_2x_3+\beta_9x_3x_3$							
X ₁ 2 0 1	X ₂ 2 0 2	X ₃ 8 0 5	Y 8 0 6	Ordinary least squares failed to detect the correct model: $\beta_0 = 0$, $\beta_1 = -0.2121$, $\beta_2 = 0$, $\beta_3 = 2.5682$, $\beta_4 = 0$, $\beta_5 = 0$, $\beta_6 = -0.1212$, $\beta_7 = 0$, $\beta_8 = -0.5455$, $\beta_9 = -0.0227$.			
$ \begin{array}{c} 1 \\ 2 \\ 1 \\ 3 \\ 0 \end{array} $	1 2 1 2 1	2 8 2 13	3.5 8 3.5 10 2	The OFR algorithm, however, perfectly detect the correct model (with only 3 terms), step by step: Step 1: x_1 was selected (ERR=96.154%, β_1 =1) Step 2: x_2 was selected (ERR= 3.693%, β_2 =2) Step 3: x_1x_2 was selected (ERR= 0.153%, β_5 =1/2)			

Kp Index Prediction (1)						
Variable	Description		Input or output			
V	Solar wind speed [km/s]	Solar wind speed [km/s]				
Bs	Southward interplanetary magnetic field [nT]					
VBs	solar wind rectified electric field [mv/m] [VBs=V·Bs/1000] Input					
р	Solar wind pressure [nPa]					
P ^{1/2}	Square root of solar wind pressure					
Кр	Kp index (variable of interest)					
Training data: Hourly data, January – June, 2000						
• Test data: Hourly data, July – December, 2000						
The identified model: $Kp(k) = 0.325543Kp(k-3) - 0.000043V(k-1) \cdot p^{1/2}(k-1) + 0.673034Bs(k-1)$ $- 0.164093Bs(k-1) \cdot p^{1/2}(k-1) - 0.000003V^2(k-1)$ $+ 0.000217V(k-1) \cdot Bs(k-2) - 0.006701Bs(k-1) \cdot Bs(k-2)$ $- 0.005810Bs(k-1) \cdot p(k-2) - 2.179360 + 0.753122 p^{1/2}(k-1)$ $+ 0.006105V(k-1) - 0.387292VBs(k-1) + 0.136271VBs(k-1) \cdot p^{1/2}(k-1)$						

Forecast of Electron Flux (5) at the Radiation BeltThe University Of Sheffield.						
We const y(k) =	We consider the following multiple input NARX model: v(k) = f[v(k-1), v(t-2), v(k-3), v(k-4),					
	$u_1(k-1),$	$u_1(k-2),$	$u_1(k-3),$	$u_1(k-4),$		
	$u_2(k-1),$	$u_2(k-2),$	$u_2(k-3),$	$u_2(k-4),$		
	$u_5(k-1),$	$u_5(k-2),$	$u_5(k-3),$	$u_5(k-4)]$ -	+e(k)	
where	y(k) =	flux(k),				
	$u_1(k) =$	V(k),				
	$u_2(k) =$	VBs(k),				
	$\bar{u_{3}(k)} =$	Pdyn(k),				
	$u_{4}(k) =$	SysH(k),				
	$u_{5}(k) =$	AsyH(k),				
I ROOKL					40/45 (Dr H.L. Wei)	

Forecast of Electron Flux (6) at the Radiation Belt

S PROGRESS (CO)

41/45 (Dr H.L. Wei)

We have applied the OFR-ERR method to the 103 training data (day141-243, 1995), and obtained a simple model containing 6 model terms:

Index	Model term	Parameter	Contribution ERR (100%)
1	Flux(d-1)	0.71090335	92.8682
2	V(d-3)*AsyH(d-1)	0.00008062	0.9910
3	SysH(d-4) *AsyH(d-1)	0.00011492	0.4564
4	VBs(d-3)*VBs(d-4)	0.00000116	0.2947
5	SysH(d-4)	0.03559492	0.1115
6	SysH(d-4)* Pdyn(d-4)	-0.00384037	0.1433
	·		

