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Key Topics

• NARMAX Methodology
◊ NARMAX method
◊ OFR-ERR algorithm 

(orthogonal forward regression and error 
reduction ratio algorithms) 

• Application 

Forecast of geomagnetic indices  
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Part 1

Linear and Nonlinear Models 

of 

Dynamic Systems

3/45 (Dr H.L. Wei)

Dynamic System Identification (1)

– Learning From Data

For a system where the model (both the model structure and 

the associated parameters) are known, one can directly 

analyse the system using the given model.

If, however, the model structure of the system is unknown, 

but only some observational data are available, how can we 

do to uncover the inherent dynamics of the system? 

Input Output

System

u(t) y(t)
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Dynamic System Identification (2) 

– A Comprehensive Procedure

Data pre-processing

Observational data

Model structure determination

Model identification and parameter estimation

Model validation

Is the identified 

model valid?

No

Yes

Applications  - system simulation; system analysis;                         

system control;  prediction/forecasting, etc.

Could be any types of data or 
signals (often need pre-procession) 

Noise analysis, scaling, 
normalisation, etc.

Try and use a most 
appropriates model structure 
that best fits your task

LS, NLS, or other 
optimization methods 
(e.g.GA, PSO, etc.)

Model validity test is critically 
important – an invalid model is 
good for nothing  

①

②

③

④

⑤
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ARX and ARMAX models

• ARX model

ARX — Auto-Regressive (AR) with eXogenous inputs

• ARMAX model

ARMAX — Auto-Regressive (AR), Moving Average  

(MA) with eXogenous inputs
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NARX and NARMAX models

• NARX model
NARX - Nonlinear Auto-Regressive (NAR) with eXogenous inputs

• NARMAX model
NARMAX - Nonlinear Auto-Regressive (NAR), Moving Average  

(MA) with eXogenous inputs
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• AR, ARMA, ARX, and ARMAX are special cases of NARMAX.
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Polynomial NARX Model (1)

For the NARX model
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Polynomial NARX Model (2)

• One approach to approximate the unknown function f is   
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• Here the aim is to approximate a high-dimensional 

function f using a set of lower dimensional functions.    
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Polynomial NARX Model (3)

• Polynomial approximation   
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2

2

( ) 0.02486 0.98368 ( 1)

           0.92130 [ ( 1)] ( 1)

           0.51936 [ ( 1)] [ ( 1)] ( 2)

           1.25977 ( 1) [ ( 1)] ( 2)

Dst k Dst k

Dst k VBs k

Dst k Dst k VBs k

Dst k VBs k VBs k

  

   

     

     

• An example  (a model for Dst prediction)

HL Wei, SA Billings & MA Balikhin, J. Geophysical Research-Space Physics, 109, A07212, 2004.
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Polynomial NARX Model (4)

• Some KEY issues in NARX modelling

♦ How to determine the model order?
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♦ How to chose model variables?

♦ How to determine model terms/regressors?
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♦ How to determine model size/length/complexity?

♦ How to determine nonlinear degree of the model?
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Polynomial NARX Model (5)

• Advantages of the polynomial NARX model

▪ Widely applicable and applied

▪ Transparent: significant model terms and variables are clearly 

known 

▪ Frequency domain analysis of nonlinear systems is allowable 

by mapping a time-domain model into the frequency domain

▪ Less sensitive to noise and thus usually generalises well 

▪ Tractable:  linear-in-the-parameters form; easy to operate

▪ Computational efficient:  easy to compute

▪ Physically interpretable: can be related back to the 

underlying system 

12/45 (Dr H.L. Wei)



7

Challenges of Black-Box Modelling
for Dynamic Systems

• Model variable selection and determination   

• Model structure determination   

• Model term selection   

• Model parameter estimation   

• Model validity test   

• Model interpretability   

13/45 (Dr H.L. Wei)

Part 2

NARMAX Model 

Identification and Construction
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Part 2A   Orthogonal Basis 

Signal Approximation with 

Orthogonal Regression

15/45 (Dr H.L. Wei)

Projection onto Orthogonal Vectors(1)

Let x1, x2, …, xm be m orthogonal vectors defined in n-

dimensional space Rn; and y a signal in Rn.

Assuming that we want to approximate y using x1, x2, …, xm, a 

conventional approach is:

y = c1x1+ c2x2 + … +cmxm + e

where c1,c2,…,cm are parameters and e is approximation error. 

Note that e is assumed to be independent of x1,x2,…, xm.

We can show that

16/45 (Dr H.L. Wei)
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Projection onto Orthogonal Vectors(2)

We can also show that

That is,

< 𝑦, 𝑦 > = 𝑐1
2 < 𝑥1, 𝑥1 > +𝑐2

2 < 𝑥2, 𝑥2 > +. . . + 𝑐𝑚
2 < 𝑥𝑚, 𝑥𝑚 > +< 𝑒, 𝑒 >

or
2 2 2 2 2 2 2 2

1 1 2 2|| || || || || || ... || || || ||m my c x c x c x e    

2 2 2

1 1 1 2 2 2 ...T T T T T

m m my y c x x c x x c x x e e    

So,
22 22

2 2 21 2
1 22 2 2 2

|| |||| || || |||| ||
1 ...

|| || || || || || || ||

m
m

xx xe
c c c

y y y y
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Projection onto Orthogonal Vectors(3)

22 22
2 2 21 2
1 22 2 2 2

|| |||| || || |||| ||
1 ...

|| || || || || || || ||

m
m

xx xe
c c c

y y y y
    

Recalling that we have 

||𝑒||2

||𝑦||2
= 1 −

𝑥1
𝑇𝑦

||𝑥1||
2

2
||𝑥1||

2

||𝑦||2
−

𝑥2
𝑇𝑦

||𝑥2||
2

2
||𝑥2||

2

||𝑦||2
−. . . −

𝑥𝑚
𝑇 𝑦

||𝑥𝑚||
2

2
||𝑥𝑚||

2

||𝑦||2

= 1 −
𝑥1
𝑇𝑦 2

𝑥1 |
2 𝑦 |2

−
𝑥2
𝑇𝑦 2

𝑥2 |
2 𝑦 |2

−. . . −
𝑥𝑚
𝑇 𝑦 2

𝑥𝑚 |2 𝑦 |2

= 1 − 𝐸𝑅𝑅1 − 𝐸𝑅𝑅2 −⋯ − 𝐸𝑅𝑅𝑚

where ERRk (k =1,2… ,m) is called the kth Error Reduction

Ratio, indicating how much (in percentage) of the

approximation error can be reduced by the kth vector.

Note that 0 ≤ ERRk ≤ 1, and ∑ERRk ≤ 1

2
, 1,2,.., ,

|| ||

T T

k k
k T

k k k

x y x y
c k m

x x x
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Projection onto Orthogonal Vectors(4)

A simple example 

1 2 3

1 1 0 0

2 ,     0 ,     1 ,     0

5 0 0 1 

y x x x

       
       

   
       
              

31 2
1 2 3

1 1 2 2 3 3

1,   2,   5,  
TT T

T T T

x yx y x y
c c c

x x x x x x
     

𝐸𝑅𝑅1 =
𝑥1
𝑇𝑦

2

𝑥1 |
2 𝑦 |2

=
1

30
= 0.0333

𝐸𝑅𝑅2 =
𝑥2
𝑇𝑦

2

𝑥2 |
2 𝑦 |2

=
4

30
= 0.1333

𝐸𝑅𝑅3 =
𝑥3
𝑇𝑦

2

𝑥3 |
2 𝑦 |2

=
25

30
= 0.8333

So,  y = x1+ 2x2 + 5x3

x1 accounts for 3.33% of the 

variation in y

x2 accounts for 13.33% of the 

variation in y

x3 accounts for 83.33% of the 

variation in y

19/45 (Dr H.L. Wei)

Projection onto Orthogonal Vectors(5)

Question: Knowing x1, x2, x3 and y, and assuming that we 

want to choose only one from x1, x2, x3 that best approximates 

y, which one we would use?    

What if we use only two?   1 2 3

1 1 0 0

2 ,   0 ,   1 ,   0

5 0 0 1 

y x x x

       
       

   
       
              

An alternative question: Assuming that we want to choose a 

minimal subset of {x1, x2, x3} that accounts for no less than 

80% of variation in y (i.e. ‘overall ERR > 80%’), which and 

how many vector(s) should be used?

What if we want to achieve approximation that accounts for 

no less than 90% of the variation in y ?   

20/45 (Dr H.L. Wei)
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Part 2B   Non-orthogonal Basis

Forward Orthogonal Regression 

21/45 (Dr H.L. Wei)

Forward Orthogonal Regression (1)

Recalling the definition of the Error Reduction Ratio (ERR),  

we check the ERR index for each of the 3 vectors in S:  

err1=
𝑥1
𝑇𝑦

2

𝑥1 |
2 𝑦 |2

=
5

6
= 0.8333

err2=
𝑥2
𝑇𝑦

2

𝑥2 |
2 𝑦 |2

=
27

50
= 0.54

err3=
𝑥3
𝑇𝑦

2

𝑥3 |
2 𝑦 |2

=
5

6
= 0.8333

1 1 0 1

2 ,   0 , 0 ,     2 .

2   2 1 5

X y

         
        

         
                

So, we choose either the 

1st or 3rd vector. 

We use a simple example to illustrate the forward orthogonal 

process. We now have 3 linearly independent vectors, 

together with a 4th observed signal:

• Step 1.

22/45 (Dr H.L. Wei)
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Forward Orthogonal Regression (2)

1 3

0

0

1 

q x

 
 

 
 
  

(we know that 𝐸𝑅𝑅1 = 83.33%)  

Step 2 searches for a new vector to join q1 .

1 3

1 1
1 1

1 1

2

0

0 ,

1 

1 0 1
2

2 0 2 ,  
1

2 1 0 

( ) 25
err = 16.67%

( )( ) 150

T

T

T

T T

q x

q x
v x q

q q

v y

v v y y

 
 

 
 
  

     
     

    
     
          

 

1 3

1 2
2 1

1 1

2

0

0 ,

1 

1 0 1
2

  0 0   0 ,  
1

  2 1   0 

( ) 1
err = 3.33% 

( )( ) 30

T

T

T

T T

q x

q x
v x q

q q

v y

v v y y

 
 

 
 
  

      
     

    
     
          

 

If x1 joins q1, we have   If x2 joins q1, we have  

• Step 2. We choose x3 as the first orthogonal vector: 

23/45 (Dr H.L. Wei)

Forward Orthogonal Regression (3)

1 1

0

0    (ERR 83.33%),

1 

q

 
 

 
 
  

Now we have 2 orthogonal vectors: 

2 2

1

2    (ERR 16.67%)

0 

q

 
 

 
 
  

Since  ERR1+ ERR2 = 100%, meaning that the two vectors 

q1 and q2 totally explain the variation of y. So, there is no 

need to search further.

We can work out that,  

y  = 5q1 +  q2 and  y  = x1 +  3x3

1 1 0 1

2 ,   0 , 0 ,     2 .

2   2 1 5

X y
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Forward Orthogonal Regression (4)

• A general idea

Let x1, x2, …, xm be m vectors defined in n-dimensional space 

Rn; and y a signal in Rn. 

Note that x1, x2, …, xm can be linearly dependent or there is 

some multicollinearity among them. 

We want to find an optimal or sub-optimal subset S of {x1, x2, 

…, xm}, such that y can be satisfactorily represented by 

elements of S. 

Note that for the above scenario, the ordinary least squares 

method may not work well.

25/45 (Dr H.L. Wei)

Forward Orthogonal Regression (5)

Choose the vector that has the maximum ‘err’ as the 1st

orthogonal vector (q1) . 

• Step 1. Calculate ERR index for each of x1, x2, …, xm : 
♦ A general procedure

err𝑘=
𝑥𝑘
𝑇𝑦

2

𝑥𝑘 |2 𝑦 |2
, 𝑘 =1,2,…,m

• Step 2. Orthogonalize each of x1, x2, …, xm (except that 

selected in Step 1) with q1; work out ERR value for each 

of the orthogonalized vectors. Choose the one that with the 

maximum ‘err’ as the 2nd orthogonal vector (q2) . 
• Step 3,4, .... Repeat the same process as in Step 2, until a  

satisfactory approximation is achieved.

The above procedure is called orthogonal forward regression (OFR) or 

orthogonal least squares (OLS) algorithm
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Forward Orthogonal Regression (6)

♦ Why Using OFR rather than ordinary least squares?

X1 X2 X3 Y

2 2 8 8

0 0 0 0

1 2 5 6

1 1 2 3.5

2 2 8 8

1 1 2 3.5

3 2 13 10

0 1 1 2

Suppose we have a data tabular at the bottom, and we want to find  

a general regression model to characterize the dependent relation 

of y on the three independent variables x1, x2, x3:

y=β0+β1x1+β2x2+β3x3+β4x1x1+β5x1x2+β6x1x3+β7x2x2+β8x2x3+β9x3x3

Ordinary least squares failed to detect the correct 

model: β0 = 0,    β1= -0.2121,  β2 = 0,    β3=2.5682,

β4 = 0,    β5= 0,            β6 = -0.1212,  

β7 = 0,    β8= -0.5455,  β9 = -0.0227. 

The OFR algorithm, however, perfectly detect the 

correct model (with only 3 terms), step by step:

Step 1: x1 was selected    (ERR=96.154%,  β1=1)

Step 2: x2 was selected    (ERR=  3.693%,  β2=2)

Step 3: x1x2 was selected (ERR=  0.153%,  β5=1/2)

Part 2C   Dictionary Learning

For NARXMAX Model Identification 

28/45 (Dr H.L. Wei)
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Dictionary Learning

In NARMAX model identification, we need to design a dictionary 

in advance. We use a simple example to illustrate the basic idea:

y(k) = f(y(k-1), y(k-2), u(k-1)) + e(k)

3

( 1) ( 1) ( 1)

( 1) ( 1) ( 2)

( 1) ( 1) ( 1)

( 1) ( 2) ( 2)

( 1) ( 2) ( 1)

( 1) ( 1) ( 1)

( 2) ( 2) ( 2)

( 2) ( 2) ( 1)

( 2) ( 1) ( 1)

( 1) ( 1) ( 1)

y k y k y k

y k y k y k

y k y k u k

y k y k y k

y k y k u k
D

y k u k u k

y k y k y k

y k y k u k

y k u k y k

u k u k u k

  


  

   


  
   

 
  

   


  
   


  

















0

1

2

{1},

{ ( 1), ( 2), ( 1)},

( 1) ( 1)

( 1) ( 2)

( 1) ( 1)
,

( 2) ( 2)

( 2) ( 1)

( 1) ( 1)

D

D y k y k u k

y k y k

y k y k

y k u k
D

y k y k

y k u k

u k u k



   

  
 

 
 
  

  
  

  
 

  

Define:  

We can use D0, D1, D2  and/or D3 to create vector sets, and then apply the 

OFR algorithm to select important vectors (ie model terms, one by one),  

and build a compact or sparse model.
29/45 (Dr H.L. Wei)

Part 3

NARMAX Model Application 

for 

Forecasting Geomagnetic Indices

30/45 (Dr H.L. Wei)
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Part 3A

Kp Index Prediction

31/45 (Dr H.L. Wei)

Kp Index Prediction (1)

Variable Description Input or 

output

V Solar wind speed [km/s]

Input

Bs Southward interplanetary magnetic field [nT]

VBs solar wind rectified electric field [mv/m] [VBs=V·Bs/1000]

p Solar wind pressure [nPa]

P1/2 Square root of solar wind pressure

Kp Kp index (variable of interest) Output

• Training data:   Hourly data, January – June, 2000

• Test data:    Hourly data, July – December, 2000  

The identified model:  
Kp(k) = 0.325543Kp(k−3)  −  0.000043V(k−1)·p1/2(k−1)  +  0.673034Bs(k−1)

− 0.164093Bs(k−1)·p1/2(k−1)  − 0.000003V2 (k−1)  

+ 0.000217V(k−1)·Bs(k−2)     − 0.006701Bs(k−1) · Bs(k−2) 

− 0.005810Bs(k−1)·p(k−2)      − 2.179360 + 0.753122 p1/2(k−1) 

+ 0.006105V(k−1) − 0.387292VBs(k−1)+0.136271VBs(k−1)·p1/2(k−1)
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Kp Index Prediction (2)

Kp Index Prediction (3)

Comparison between the 3-hour ahead prediction of the Kp index during a 30-

day interval between September and October of year 2000. Red line indicates 

the model predicted Kp values.
34/45 (Dr H.L. Wei)
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Part 3B

Forecasting the daily averaged flux electrons 

with energy > 2MeV  at Geostationary orbit

35/45 (Dr H.L. Wei)

As a case study, we use the following data to train models:

Forecast of Electron Flux (1)
at the Radiation Belt  

Output variable:
Daily data of 120 days (22nd May 1995 - 17th Sept 1995) for 
electron flux at the radiation belt (>2MeV). 
(data were from GOES 7 & 8 satellites)

Input variables:
Hourly data of 120 days (22nd May 1995-17th Sept 1995)  

Vsw (solar wind velocity) 
VBs (solar wind rectified electric field) 
Pdyn (flow pressure) 
Sym-H index (symmetric part of disturbance [nT])
Asy-H index (asymmetric part of disturbance [nT])

(data were from ACE & WIND spacecraft and geomagnetic 
indices)

36/45 (Dr H.L. Wei)
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Forecast of Electron Flux (2)
at the Radiation Belt 

Our objective is to build models from these hourly and daily 
data, and use the models to forecast the future behaviour of 
electron flux.

Hourly recorded
Vsw (solar wind velocity) 
VBs (rectified electric field) 
Pdyn (flow pressure) 
Sym-H index
Asy-H index

Daily recorded Electrons 

Data Observed Today and 
Some Previous Days  

Flux of 
electrons        
( > 2MeV) 

Predict Tomorrow’s 
Behaviour

37/45 (Dr H.L. Wei)

Forecast of Electron Flux (3)
– MISO NARX Model 

• We have 5 input variables (V, VBs, P, Sym-H, Asy-H),   
and 1 output variable (electron flux).

• We use previous values of these input and output 
variables to build models. Specifically, we use the values 
below to predict the future value of electron flux:

( 3),     ( 2),    ( 1),    ( ),

     ( 3),         ( 2),        ( 1),         ( ),

  ( 3),     ( 2),     ( 1),      ( ),

      ( 3),         ( 2),         ( 1),       

Flux d Flux d Flux d Flux d

V d V d V d V d

VBs d VBs d VBs d VBs d

P d P d P d

  

  

  

     ( ),

( 3),   ( 2),   ( 1),   ( ),

( 3),  ( 2),   ( 1),  ( ),  

P d

SysH d SysH d SysH d SysH d

AsyH d AsyH d AsyH d AsyH d

  

  

Flux(d+1)

= ??  

2 days before, day before,    yesterday,      today         tomorrow

38/45 (Dr H.L. Wei)
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We use Vsw , VBs, Pdyn, Sym-H, and Asy-H as inputs, and 
electron flux (maxima) as output (shown below).  

Forecast of Electron Flux (4)
at the Radiation Belt  

The daily electron flux data: 
Day 141 - 260 of year 1995 
(22 May-17 Sept).

• 141- 243 (22 May -31 Aug)  
for model identification

• 244-260 (01 -17 Sept) for  
model test

140 160 180 200 220 240 260
0

2000

4000

6000

8000

10000

F
lu

x
 (

M
e

V
)

140 160 180 200 220 240 260
0

1

2

3

4

Day (of Year 1995)

lo
g

1
0
 F

lu
x
 (

M
e

V
)
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Forecast of Electron Flux (5)
at the Radiation Belt  

1 1 1 1

2 2 2 2

( ) [ ( 1),      ( 2),     ( 3),    ( 4),

               ( 1),    ( 2),   ( 3),   ( 4),

               ( 1),   ( 2),   ( 3),   ( 4),

                     ...              ...     
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We consider the following multiple input NARX model:   

where        y(k)   =  flux(k), 
u1(k) =  V(k),  
u2(k) =  VBs(k),
u3(k) =  Pdyn(k),
u4(k) =  SysH(k),  
u5(k) =  AsyH(k),  
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Forecast of Electron Flux (6)
at the Radiation Belt  

We have applied the OFR-ERR method to the 103 
training data ( day141-243, 1995), and obtained a simple 
model containing 6 model terms:      

Index Model term Parameter Contribution 
ERR (100%)

1 Flux(d-1) 0.71090335 92.8682

2 V(d-3)*AsyH(d-1) 0.00008062 0.9910

3 SysH(d-4) *AsyH(d-1) 0.00011492 0.4564

4 VBs(d-3)*VBs(d-4) 0.00000116 0.2947

5 SysH(d-4) 0.03559492 0.1115

6 SysH(d-4)* Pdyn(d-4) -0.00384037 0.1433
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Forecast of Electron Flux (7)
in the Radiation Belt  
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Forecast of Electron Flux (8)
in the Radiation Belt  
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Forecast of Electron Flux (9)
at the Radiation Belt  
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Concluding Remarks

•   The orthogonal forward regression (OFR) and error 
reduction ratio (ERR) algorithms provide a powerful     
tool for compact nonlinear model building from data. 

•  NARMAX models are transparent and can be written 
down. This is highly desirable in many scenarios.

•  NARMAX method can be used not only for prediction   
but also more importantly for system analysis. For 
example, it can detect how the system output relates 
to the inputs, and how the inputs interact with other.  

◊ The NARMAX and OFR-ERR Methods 
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