

FLARECAST THE FULLY AUTOMATED SOLAR FLARE FORECASTING SYSTEM

M. K. GEORGOULIS* & THE FLARECAST CONSORTIUM

* RCAAM OF THE ACADEMY OF ATHENS

SWx SUMMER SCHOOL

- Supported by EC H2020 Research and Innovation Action under grant no. 640216
- Period of performance: 2015 2017
- Total budget: 2.4 MEUR

Alcudia, Mallorca, Spain 26 - 28 July 2017

OUTLINE

Why do we need solar flare prediction? The nature of flare occurrence Can flares be predicted? The FLARECAST project Objectives Organization Preliminary outcome

Conclusions

flarecast.eu

M. K. GEORGOULIS, & FLARECAST CONSORTIUM

Hard flare photons and non-thermal particulate (mostly protons >10 MeV) affect humans beyond LEO and on solar system bodies lacking an atmosphere. Damages in space-based electronics, radio blackouts, etc., can occur as a result of flares

No early warning time for flare photons slim window for particulate in worst case!

M. K. GEORGOULIS, & FLARECAST CONSORTIUM

flarecast.eu

arrival of CME-shockaccelerated particles

 t_0 + 2-4 days

PROGRESS SUMMER SCHOOL **MAJOR FLARE REPERCUSSIONS: EVERYTHING UNDER THE SUN**

M. K. GEORGOULIS, & FLARECAST CON

flarecast.eu

3D Representation of GOM Infrastructure Semi Submersible Modular Drilling Unit – Tension Leg Platform

ep

latitu

SOLAR FLARES: A PHENOMENOLOGY DEFINITION

www.helioviewer.org

(hv)

electromagnetic spectrum. Typically measured in 1 - 8 Å SXR. Sizable flares originate from solar active regions.

2011-08-09 06:04

AIA 131

M. K. GEORGOULIS, & FLARECAST CONSORTIUM

	' _
	_
	_
	_
	_
	_
Х	->
	_
М	->
WI	_
	_
	_
\sim	×.
V	->
	_
D	. ~
 D	
- 09	1:30

M. K. GEORGOULIS, & FLARECAST CONSORTIUM

THE NATURE OF FLARE OCCURRENCE

Flare occurrence number vs. integrated photon flux

Flares are (Rosner & Vaiana 1978):

- Stochastic relaxation (storage and release) processes
- Physically uncoupled / independent
- Brief, comparing to intermediate times between flares

$$P(t) = \overline{v}e^{\overline{v}}$$

Leading to a power-law occurrence frequency for flare energies

M. K. GEORGOULIS, & FLARECAST CONSORTIUM

- $-\overline{v}t$

Power-law distribution of flare size later attributed to the concept of selforganized criticality (1990s) & the concept of marginal stability

A RATHER GRAPHIC EXAMPLE OF MARGINAL STABILITY

Credit: Aaron Mak - YouTube

flarecast.eu

M. K. GEORGOULIS, & FLARECAST CONSORTIUM

HOWEVER, ARE FLARES RANDOM?

Crosby, PhD Thesis (1996)

Exponential law of waiting times: a totally random, memoryless flare occurrence along the classical selforganized criticality concept

Bofetta et al., (1999)

Robust power-law of waiting times: a system perfectly keeping a memory in giving flares

M. K. GEORGOULIS, & FLARECAST CONSORTIUM

flarecast.eu

100.00

Wheatland (2000)

Time-dependent Poisson scaling in waiting times: some memory kept, with stochasticity demonstrated in an exponential distribution of different flaring rates

FLARES: A MIX OF STOCHASTICITY AND MEMORY - NOT RANDOMNESS

flarecast.eu

NOAA AR 10930 ullet

X-class

10

Period observed: ~16 days

- Clustering of flares in a flaring active region
- Flaring features of active regions, i.e., <u>complex</u> magnetic PILs, continuously and consistently driven

Typical situation of a pink-noise dynamical M. K. GEORGOULIS, & FLARECAST CONSORTIUM PERFONSE timeseries Alcudia, Mallorca, 26 Jul 2017

SOLAR FLARE PREDICTION: WHAT DOES IT MEAN?

BINARY FORECASTING

A flare with the following characteristics will / will not occur:

- Flare class, differential or cumulative (e.g., M1-M9.9 or M1+)
- Forecast window (e.g., 24 hours)
- Latency or not (e.g., effective forecast window starts after $xx (\ge 0)$ hours

PROBABILISTIC FORECASTING A flare with the following characteristics will occur with probability p(0 :

- Flare class, differential or cumulative (e.g., M1-M9.9 or M1+)
- Forecast window (e.g., 24 hours)
- Latency or not (e.g., effective forecast window starts after $xx (\ge 0)$ hours

SOLAR ACTIVE REGIONS: FLARE HOTSPOTS, BUT NOT ALL OF THEM **SDO/AIA, 131 A**

NOAAAR 11909, 12/02-04, 2013

<u>Complexity</u>: compactness, flows, magnetic polarity inversion lines

Only ~1.8% of active regions in solar cycle 23 gave at least one X-class flare

What is the difference between NOAA AR 11909 that did not host major eruptions, and NOAA AR 11185, that did?

M. K. GEORGOULIS, & FLARECAST CONSORTIUM

SOLAR FLARES AND MAGNETIC COMPLEXITY

- Flares occur in sunspot complexes
- Sunspots with increasing complexity will lead to higher flare rates for all classes (McCloskey et al., 2016)
- But what does "complexity" mean?
 - Nonlinear evolution
 - Irreversibility (i.e., dissipative progression)
 - Far from equilibrium (metastability / marginal stability)

M. K. GEORGOULIS, & FLARECAST CONSORTIUM

QUANTITATIVE COMPLEXITY CLASSIFICATION AND SOLAR FLARE PREDICTION

- Monoscale / multiscale methods
- Morphological methods
- Statistical methods (on historical & archived data)
- Machine-learning, combinatorial, & assimilation methods
- Analytical methods
- Local helioseismology methods
- Other (slightly exotic) methods

Numerous methods over the past 20 years. An effort to categorize them results in the following (Georgoulis, 2012):

- Abramenko et al. (2002, 2003); McAteer at al. (2005); Georgoulis (2005, 2012); Uritsky et al. (2007, 2013); Hewett et al. (2008); Conlon et al. (2010); Kestener et al. (2010), McAteer (2015)
- Falconer et al. (2001, 2002, 2003, 2008, 2009, 2011); Georrgoulis & Rust (2007); Schrijver (2007); Mason & Hoeksema (2010); Leka & Barnes (2003a; b); Cabnfield et al. (1999); Barnes & Leka (2008), Korsos et al. (2015)
- Wheatland (2001); Moon et al. (2001); Gallagher et al. (2002); Wheatland (2004, 2005a, b)
- Belanger et al. (2007); Qahwaji & Colak (2007); Colak & Qahwaji (2008, 2009); Qahwaji et al. (2008); Al-Omari et al. (2010); Yu et al. (2009; 2010a, b); Huang et al. (2010); Bobra & Couvidat (2014); Bobra & Ilonidis (2015); Boucheron et al., (2015); Nishizuka et al., (2016)
- Wheatland & Glukhov (1998); Wheatland (2008)
- Reinard et al. (2010); Komm et al. (2011), etc.
- Jenkins & Fischbach (2009); Javorsek et al. (2012); Strugarek & Charbonneau (2014)
- M. K. GEORGOULIS, & FLARECAST CONSORTIUM

WHY MACHINE LEARNING METHODS?

- Need for complete automation
- Accommodation of both binary & probabilistic forecasting methods
- Multiple flare predictors possibility of ranking them
- Complex parametric investigation
- Automated validation
- A posteriori physical understanding in case of ranking of predictors

Bobra & Couvidat (2015)

M. K. GEORGOULIS, & FLARECAST CONSORTIUM

flarecast.eu

number of features from lowest to highest univariate score

PROPERTIES TRANSLATED TO PREDICTIVE PROBABILITIES

Keyword	Description	Formula	F-Score	Selection
TOTUSJH	Total unsigned current helicity	$H_{c_{ m total}} \propto \sum B_z \cdot J_z $	3560	Included
TOTBSQ	Total magnitude of Lorentz force	$F \propto \sum B^2$	3051	Included
TOTPOT	Total photospheric magnetic free energy density	$ ho_{ m tot} \propto \sum \left(oldsymbol{B}^{ m Obs} - oldsymbol{B}^{ m Pot} ight)^2 dA$	2996	Included
TOTUSJZ	Total unsigned vertical current	$J_{z_{\text{total}}} = \sum J_z dA$	2733	Included
ABSNJZH	Absolute value of the net current helicity	$H_{c_{abs}} \propto \left \sum B_z \cdot J_z \right _{p^+}$	2618	Included
SAVNCPP	Sum of the modulus of the net current per polarity	$J_{z_{sum}} \propto \left \sum_{z}^{B_z} J_z dA \right + \left \sum_{z}^{B_z} J_z dA \right $	2448	Included
USFLUX	Total unsigned flux	$\Phi = \sum B_z dA$	2437	Included
AREA_ACR	Area of strong field pixels in the active region	Area = \sum Pixels	2047	Included
TOTFZ	Sum of z-component of Lorentz force	$F_z \propto \sum (B_x^2 + B_y^2 - B_z^2) dA$	1371	Included
MEANPOT	Mean photospheric magnetic free energy	$\overline{ ho} \propto rac{1}{N} \sum \left(oldsymbol{B}^{ ext{Obs}} - oldsymbol{B}^{ ext{Pot}} ight)^2$	1064	Included
R_VALUE	Sum of flux near polarity inversion line	$\Phi = \sum B_{LoS} dA$ within R mask	1057	Included
EPSZ	Sum of z-component of normalized Lorentz force	$\delta F_z \propto \frac{\sum (B_x^2 + B_y^2 - B_z^2)}{\sum B^2}$	864.1	Included
shrgt45	Fraction of Area with shear $> 45^{\circ}$	Area with here a second s	740.0	
MEANSHR	Mean shear angle	r=+ What is t	he or	otima
MEANGAM	Mean angle of field from radial	$\overline{\gamma}$		
MEANGBT	Mean gradient of total field	With all t	his inf	orma
MEANGBZ	Mean gradient of vertical field	achieve	reliab	le NF
MEANGBH	Mean gradient of horizontal field	$\overline{ \nabla B_h } = \frac{1}{N - \sqrt{(\partial x)} - \sqrt{(\partial y)}}$	12.40	Discarded
MEANJZH	Mean current helicity (B_z contribution)	$\overline{H_c} \propto rac{1}{N} \sum B_z \cdot J_z$	46.73	Discarded
TOTFY	Sum of y-component of Lorentz force	$F_y \propto \sum B_y B_z dA$	28.92	Discarded
MEANJZD	Mean vertical current density	$\overline{J_z} \propto rac{1}{N} \sum \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y} ight)$	17.44	Discarded
MEANALP	Mean characteristic twist parameter, α	$\alpha_{\text{total}} \propto \frac{\sum J_z \cdot B_z}{\sum B_z^2}$	10.41	Discarded
TOTFX	Sum of x-component of Lorentz force	$F_x \propto -\sum B_x B_z dA$	6.147	Discarded
EPSY	Sum of y-component of normalized Lorentz force	$\delta F_y \propto \frac{-\sum B_y B_z}{\sum B^2}$	0.647	Discarded
EPSX	Sum of x-component of normalized Lorentz force	$\delta F_x \propto \frac{\sum B_x B_z}{\sum B^2}$	0.366	Discarded

Bobra & Couvidat (2015)

flarecast.eu

way to deal ation and still T forecasts?

2×10²² 4×10²² 6×10²² 8×10²² 1×10²³ Φ_{tot} [Mx]

Discriminant analysis: Two-function, linear DA for four-class prediction (non-flaring, C, M, and X-class)

M. K. GEORGOULIS, & FLARECAST CONSORTIUM

WHAT IS FLARECAST?

FLARECAST is an EC H2020 project aiming to develop an advanced solar flare prediction system based on automatically extracted physical properties of solar active regions, coupled with state-of-the-art solar flare prediction methods and validated using the most appropriate forecast verification measures.

FLARECAST top-level objectives:

- To understand the drivers of solar flare activity and improve flare prediction
- To provide a globally accessible flare prediction service that facilitates expansion
- To engage with space weather end users and inform policy makers and the public

M. K. GEORGOULIS, & FLARECAST CONSORTIUM

flarecast.eu

Source: NASA SDO

THE FLARECAST CONSORTIUM

M. K. GEORGOULIS, & FLARECAST CONSORTIUM

flarecast.eu

THE FLARECAST CONSORTIUM

Institution

Project Coordinator Academy of Athens (AA)

Trinity College Dublin (TCD)

Università degli Studi di Genova (UNIGE)

Consiglio Nazionale delle Ricerche (CNR)

Centre National de la Recherche Scientifique (CNRS)

Université Paris-Sud (PSUD)

Fachhochschule Nordwestschweiz (FHNW)

Met Office (MO)

Northumbria University (UNN) Project Scientist

M. K. GEORGOULIS, & FLARECAST CONSORTIUM

flarecast.eu

			FLARECA
	Country	Expertise	
•	GR	Solar physics, flare forecasting	
	IE	Solar physics, flare forecasting	
	IT	Mathematical techniques	
	IT	Mathematical techniques	
	FR	Solar physics, magnetic field simulations	
	FR	Infrastructure (MEDOC)	
	CH	Computer science	
	UK	Operational SpWx, verification	
t	UK	Solar physics, flare forecasting, verification	

FLARECAST DATA TYPES

Overarching science question: how far can we go in predicting solar flares?

External data:

- SDO / HMI NRT SHARPs
- NOAA / SWPC SRS data
 - Active region numbers
 - **AR** locations
 - Flare occurrences

Science data:

- Extracted properties
- Prediction algorithm config.
- Predictions
- Validation

M. K. GEORGOULIS, & FLARECAST CONSORTIUM

Infrastructure data:

- Algorithm management
- Workflow management

FLARECAST ARCHITECTURE

M. K. GEORGOULIS, & FLARECAST CONSORTIUM

FLARECAST EXTERNAL

SDO / HMI data

- SHARP vector magnetograms NRT (hmi.sharp_720s_nrt)
- LOS magnetograms (hmi.M_720s)
- SHARP vector magnetograms definitive (hmi.sharp_720s)
- SRS active region & flare data (YYYY_events.tar.gz)

M. K. GEORGOULIS, & FLARECAST CONSORTIUM

M. K. GEORGOULIS, & FLARECAST CONSORTIUM

WP1: PROJECT MANAGEMENT

- Project Management Board (PMB)
 - Project Coordinator
 - **Project Scientist**
 - WP Leaders (at least 1 rep from each partner)
- Steering Committee
 - Neal Hurlburt (LMSAL USA), Chair
 - Graham Barnes (NWRA/CoRA USA)
 - Doug Biesecker (NOAA / SWPC USA)
 - Pedro Russo (Leiden Obs. NL)
 - Silvia Villa (Milano Pol. School IT)

M. K. GEORGOULIS, & FLARECAST CONSORTIUM

flarecast.eu

WP2: ACTIVE REGION PROPERTIES AS PREDICTORS OF FLARING ACTIVITY FLARE CAST

Data Source	Property Group	Developer	Status
SWPC catalogues			(To do / In progress / Under testing / Delivered
	Solar Region Summary properties	ICD? HNW	
	COES X-ray events	TCD / FHNW	
LOS magnetograms			
	SMART-derived properties (Ahmed et al., 2013)	тсп	In progress
	SMART deta Inder (Padinhatteen et al., 2015)	ICD	o do
	Effective connected magnetic field strength ($\rm B_{eff}$) (Corpoulis & Rust, 2007)	AA	Under testing
	Fractal dimension (Georgoulis, 2012)	АА	Under esting
	Multi fractal structure function s(q) inertial range index k (Georgouiis, 2012)	M	Under testing
	Fourier power spectral index (Guerra et. al., 2015)	AA / TCD	Under testing / Under testing
	CWT power spectral index (Hewett et al., 2008)	TCD	Under testing
	Generalised correlation dimension (Georgouits 2012)	АА	Under resting
	Holder exponent h (Conton et al. 2010)	M	o do
	Hausdorff dimension D(h) (Conlon et al., 2010)	AA	⊤o do
	WTMM (Conton et al. 2010)	.AA	To do
	Decay Index (Zuccarello et al. 2014)	TCD	Under testing
	3D magnetic null point (Reid et al. 2012)	ICD	In progress
	R (Schriver 2007)	TCD	⊤o do
	LWI sg (Eaksmen et al. 2006)	Code not yet a	vailable
	Ising energy (Ahmed et al. 2010)	TCD / AA	To do / To do
	WG _M and S _H (Korsos et al. 2015)	TCD / M	To do / To do
	Helicity injection rate (Park et al. 2010)	TCD	In progress
Aector magnelograms			
	SHARP properties (Bobra et al. 2014)	ICD	o do
	Helicity (multiple works [e.g. Bobra & Couvida: 2015])	Code casily rep	producible - developer to be decided
	Free magnetic energy (multiple works [e.g. Dobra & Couvidat 2015])	Code easily rep	producible - developer to be decided
	Non-neutralized currents (Georgouits et al., 2012)	АА	Under resting
	Flow fields (Wang et al. 2014)	ICD	Under testing
Intensity images			
	Flow fields		

Predominantly photospheric active region magnetograms

+ SHARP data properties

M. K. GEORGOULIS, & FLARECAST CONSORTIUM

flarecast.eu

WP3: FLARE PREDICTION ALGORITHMS

M. K. GEORGOULIS, & FLARECAST CONSORTIUM

flarecast.eu

- Supervised / unsupervised ML methods (standard, advanced, innovative)
- Non-ML methods
- Genetic algorithms
- Statistical methods

Example of multi-layer perceptron

Open-source architecture of Docker containers within Docker engines

pick and mix installation

M. K. GEORGOULIS, & FLARECAST CONSORTIUM

flarecast.eu

WP5: DATA AND FORECAST VALIDATION **Binary validation: Flare (YES) or No Flare (NO)**

	Forecast Flare	Forecast No-flare
Observed Flare	TP	FN
Observed No-flare	FP	TN

2 x 2 contingency table

- TP : true positives •
- FN : false negatives
- FP : false positives •
- TN : true negatives •

Table courtesy: Shaun Bloomfield

Generalized skill score:

M. K. GEORGOULIS, & FLARECAST CONSORTIUM

Tailoring according to different end user needs

Heidke skill score (ref: random prediction): •

$$HSS = \frac{2(TP + TN) - N}{N}$$

Appleman skill score (ref: climatology [v]): •

$$ApSS = \frac{TP - FP}{N}$$

True skill statistic (ref: weighting POD w. POFD):

TSS = POD - POFD

WP5: DATA AND FORECAST VALIDAT Accept that a probability 0 < p < 1 is assigned to each prediction

WP6: EXPLORATORY RESEARCH

Coronal Mass Ejection

M. K. GEORGOULIS, & FLARECAST CONSORTIUM

Understand solar magnetic eruptions

- Improve future flare prediction, including using timeseries
- Investigate suitability of the flare forecast window
- Advance CME prediction

WP7: DISSEMINATION – SCIENTIFIC COMMUNITY

Pages / Management

/ Publications and Conferences

FLARECAST Publication Plan

Created by D. Shaun Bloomfield, last modified by Etienne Pariat on Mar 31, 2017

At least thirteen (13) envisioned refereed papers, of which:

- Four (4) have been already published
- Two (2) have been accepted
- Five (5) have been submitted
- Two (2) are in preparation

M. K. GEORGOULIS, & FLARECAST CONSORTIUM

A&A 601, A125 (2017) DOI: 10.1051/0004-6361/201630043 © ESO 2017

Relative magnetic helicity as a diagnostic of solar eruptivity

E. Pariat¹, J. E. Leake^{2,6}, G. Valori³, M. G. Linton², F. P. Zuccarello⁴, and K. Dalmasse⁵

NEW PREDICTORS: NON-NEUTRALIZED ELECTRIC CURRENTS; ISING ENERGY

- Eleven (11) solar active regions
- Total net current positively correlated with the overall flare index in these regions

M. K. GEORGOULIS, & FLA

flarecast.eu

Nonlinear information added by the inclusion of net electric currents into solar flare analysis

¹⁰dia, Mallorca, 26 Jul 2017

PRELIMINARY RESULTS: FORECAST ATTEMPTS

M. K. GEORGOULIS, & FLARECAST CONSORTIUM

flarecast.eu

Comparative performance of different prediction algorithms

WP7: DISSEMINATION – GOVERNMENT & INDUSTRY

Lord Soley, Uk and Research

Let me just gi working. FLA forecasting sy electronic cor transmission. budget. The L they will unde 2020 projects but what is funding beyo

of each in the grid below).

Ability to tailor forecast Accuracy Content Details of potential impacts Ease of access/method of delivery Ease of use/understanding Frequency of forecasts Information on the uncertainty of the forecast Presentation Timeliness of data Scientific detail

1.00

Source: politi Survey based on 31 responses from Stakeholders

9. Which factors are/would be important to you in a flare forecasting service? (please score the importance

M. K. GEORGOULIS, & FLARECAST CONSORTIUM

WP7: DISSEMINATION – PUBLIC

EU Researchers Night, TCD, Dublin, 30.09.2016

Science Café, Zurich, 11.11.2016

ll futuro è in città

N SOFTWARE SARÀ CAPACE DI PREVEDERE I BRILLAMENTI, FENOMENI PERICOLOSI NELLO SPAZIO Ricercatori a caccia di tempeste solari Università e Cnr stanno creando una squadra di tecnici e scienziati internazional

i luce che sono le aurore lari. Le cose cambiano se in ece di starcene coi piedi pe erra voliamo su un aereo ono farci mal dell'Università di Genova e del Cnr sta creando ins

M. K. GEORGOULIS, & FLARECAST CONSORTIUM

flarecast.eu

http://flarecast.eu/outreach-activities

Fete de la Science, Paris, 16.10.2016

Commissione europea, nel-l'ambito del programma Horizon 2020, con 3 milioni di euro, e oltre all'Italia coincinque Paesi coor nati da Manolis Georgou fisico dell'Academy of

Tra un anno e ast sarà pronto. A gennaio eorgoulis e colleghi lo pre enteranno a Londra ad ur nposio di aziende produt rici di satelliti, interessate mitare i danni ai loro appa

Winter solstice, Duebendorf, 21.12.2016

CURRENT STATUS OF THE PROJECT Project progressing nominally; minor delays in some components

- Property extraction alorithms: INTEGRATED
- Property database: DEVELOPED
- Prediction algorithms: INTEGRATED
- Prediction database: DESIGNED
- Verification database: BEING DESIGNED
- Near-realtime forecasting system: BEING DESIGNED
- Forecast & verification visualization: BEING DESIGNED

M. K. GEORGOULIS, & FLARECAST CONSORTIUM

Forecast verification algorithms & uncertainties: DEVELOPED, UNDER INTEGRATION

CONCLUSIONS

- Consensus that solar flare forecasting should be part of our SWx strategic toolbox
- FLARECAST is arguably the most systematic effort undertaken so far
- Diversity is necessary: different backgrounds and expertise on the task
- An EU project, it is fully open-source and free access (data + infrastructure)
- The near-realtime forecast tool will be delivered in early 2018
- The key science question is how far we can go in credibly predicting solar flares

An answer? Still TBD - it looks, however, that stochasticity cannot be completely lifted, so we are effectively left to deal with probabilistic forecasts

M. K. GEORGOULIS, & FLARECAST CONSORTIUM

FLARECAST FACES AND VOICES: DIVERSITY AT WORK

BACKUP SLIDES

WP6: EXPLORATIVE RESEARCH

- Understanding solar magnetic eruptions
 - Exploitation of existing 3D MHD simulations
 - Investigation of properties and types of evolution that trigger eruptions

Improving flare prediction

- Investigation of new properties / predictors
- Timeseries vs. point-in-time prediction

flarecast.eu

M. K. GEORGOULIS, & FLARECAST CONSORTIUM

S5: DEVELOPING NEW SWE TOOLS

CURRENT HMI JSOC DATA AVAILABILITY

2006

2015

2004

2012

ESWW13

flarecast.eu

M. K. GEORGOULIS, D. S. BLOOMFIELD & FLARECAST TEAM

FLARECAST SCIENCE DATA : PROPERTIES

Properties utilizing LOS magnetograms

Properties provided by SHARPs + published over last ~25 years, until today

> **Properties utilizing** vector magnetograms

flarecast.eu

Data Source	Property Group	Developer	Status
SWPC catalogues			(To do / in progress / Under testing /
			Delivered)
	Solar Region Summary properties	TCD	
	GOES X-ray events	TCD	
LOS magnelograme			
	SMART-derived properties (Ahmed et al., 2013)	TCD	In progress
	SMART delta finder (Padinhatteeri et al., 2015)	TCD	To do
	Effective connected magnetic field strength (B _{aff}) (Georgouils & Rust, 2007)	*	Delivered
	Fractal dimension (Georgouits, 2012)	AA	Delivered
	Multi-fractal structure function s(q) inertial range index k (Georgouils, 2012)	*	Delivered
	Fourier power spectral index (Guerra et. al., 2015)	AA / TOD	Under testing / Delivered
	CWT power spectral index (Hewett et. al., 2008)	TCD	Delivered
	Generalised correlation dimension (Georgoulis, 2012)	AA	Delivered
	Holder exponent h (Conton et al., 2010)	AA	In progress
	Hausdorff dimension D(h) (Conton et al., 2010)	AA	In progress
	WTMM (Conton et al., 2010)	TCD	In progress
	Decay Index (Zuccarello et al. 2014)	TCD	Delivered
	Magnetic polarity inversion line characteristics (Mason & Hoeksema 2010)	TCD	Delivered
	3D magnetic null point (Reid et al. 2012)	TCD	Under testing
	R (Schrijver 2007) *	TCD	Delivered
	LWL _{SG} (Falconer et al. 2008) *	TCD	Delivered
	bing energy (Ahmed et al. 2010)	AA	Delivered
	WG _M and S _H (Korsos et al. 2015)	AA	Under testing
	Magnetic helicity injection rate proxy (Park et al. 2010)	TCD	Under testing
Vector magnetograme			
	SHARP properties (Bobra et al. 2014)	TCD	Under testing
	Magnetic helicity injection rate (Berger & Field 1984)	TCD	Under testing
	Magnetic energy injection rate (Kusano et al. 2002)	TCD	Under testing
	Non-neutralized currents (Georgouils et al., 2012)	**	Delivered
	Flow fields (Wang et al. 2014)	TCD	Under testing
	Magnetic bipolar feature characteristics	TCD	Under testing
Intensity images			
	Flow fields	TCD	Under testing

FLARE CAST

M. K. GEORGOULIS, D. S. BLOOMFIELD & FLARECAST TEAM

PSTEP DISCUSSION

Some validation results on specific methods and data subsets

ESWW13 -

M. K. GEORGOULIS, D. S. BLOOMFIELD & FLARECAST TEAM

flarecast.eu

FLARECAST SCIENCE DATA: ALGORITHMS

- **Algorithms considered**
 - Standard ML
 - Advanced ML
 - Non-ML
 - Innovative ML

Parameter classification by means of their importance for prediction, using an advanced method

Courtesy: A. M. Massone et al.

flarecast.eu

FLARE CAST

Example of a multilayer percepton algorithm

M. K. GEORGOULIS, D. S. BLOOMFIELD & FLARECAST TEAM

PSTEP DISCUSSION

INFRASTRUCTURE AND MOBILITY

ESWW13

- Totally open-source software, 0 allowing:
 - Making local copies of the entire infrastructure
 - Using any part or the entire **FLARECAST** databases
 - Plugging-in one's favorite algorithm for test and validation

CONCLUSION

FLARECAST: a project in full swing

- Work delivered independently and at different levels watch out for projectsupported refereed papers in the next months
- Science data model: two [2] types of external data (HMI, SRS); four [4] types of science data (predictors, algorithms, prediction, validation)
- First comprehensive prediction results due in a few months project expiring at the end of 2017
- Data, databases and infrastructure fully accessible worldwide

M. K. GEORGOULIS, D. S. BLOOMFIELD & FLARECAST TEAM

