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Abstract This study is focused on understanding the coupling between different electron populations in
the inner magnetosphere and the various physical processes that determine evolution of electron fluxes at
different energies. Observations during the 17 March 2013 storm and simulations with a newly developed
Versatile Electron Radiation Belt-4D (VERB-4D) are presented. Analysis of the drift trajectories of the energetic
and relativistic electrons shows that electron trajectories at transitional energies with a first invariant on
the scale of ~100MeV/Gmay resemble ring current or relativistic electron trajectories depending on the level
of geomagnetic activity. Simulations with the VERB-4D code including convection, radial diffusion, and energy
diffusion are presented. Sensitivity simulations including various physical processes show how different
acceleration mechanisms contribute to the energization of energetic electrons at transitional energies. In
particular, the range of energies where inward transport is strongly influenced by both convection and radial
diffusion are studied. The results of the 4-D simulations are compared to Van Allen Probes observations at
a range of energies including source, seed, and core populations of the energetic and relativistic electrons in
the inner magnetosphere.

1. Introduction

The dynamic evolution of the inner magnetosphere is primarily driven by the solar wind. However, predicting
and understanding the nonlinear response of different electron populations in the inner magnetosphere,
including ring current and higher energy radiation belts, has been a grand challenge since the beginning
of the space age. The response of the radiation belts to solar variability is still poorly understood. Reeves
et al. [2003] showed that approximately half of all geomagnetic storms result in a net depletion of the outer
radiation belt or do not substantially change relativistic electron fluxes as compared to prestorm conditions,
while the remaining 50% result in a net flux enhancement. Leading mechanisms for electron acceleration
to relativistic energies include radial diffusion driven by ultralow frequency (ULF) waves [e.g., Kellogg, 1959;
Roederer, 1970; Fälthammar, 1965; Schulz and Lanzerotti, 1974; Hudson et al., 2001; Elkington et al., 2003; Shprits
and Thorne, 2004], local stochastic acceleration driven by very low frequency (VLF) or extremely low frequency
(ELF) waves (see reviews by Shprits et al. [2008a, 2008b], Millan and Thorne [2007], Millan and Baker [2012], and
references therein), and shock-induced acceleration [Blake et al., 1992; Li et al., 1993].

During this past decade, there have been a number of simulations of electron radiation belts ranging in
complexity from 1-D [Shprits et al., 2005, 2006; Lam et al., 2009; Chu et al., 2010] radial diffusion, and 2-D simula-
tions of pitch angle and energy scattering [Albert and Young, 2005; Shprits et al., 2006] to comprehensive 3-D
short-term and long-term simulations [e.g., Shprits et al., 2008a, 2008b; Subbotin and Shprits, 2009; Subbotin
et al., 2010, 2011a, 2011b; Xiao et al., 2010; Kim et al., 2011, 2012; Kim and Shprits, 2013; Tu et al., 2013; Glauert
et al., 2014]. However, all of these simulations specified the outer boundary for the radial diffusion near GEO
and also specified the lower energy boundary condition at all radial distances. These boundary conditions
served as a source of particles that can be further accelerated to relativistic energies. The 3-D Fokker-Planck type
codes accounted for the radial diffusion, pitch angle scattering, energy diffusion, and mixed pitch angle energy
diffusion but ignored the convective transport that determines the dynamics of lower energy electrons.
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There have also been a number of recent studies that focused on the dynamics of the lower energy ring
current population, which is dominated by convective transport and losses. Historically, ring current
studies concentrated on the dynamics of ions, as they contribute roughly 75 to 85% of the total energy
density [Frank, 1967; Liu et al., 2005], while the dynamics of the ring current electrons have been
largely neglected.

Several efforts have been recently made to combine convective transport with radial diffusion [e.g., Miyoshi
et al., 2003] or convective transport, variable on short time scales with pitch angle scattering and energy
diffusion but excluding radial diffusion due to ULF waves [e.g., Fok et al., 2014]. Particle tracing codes
[e.g., Hudson et al., 2014, 2015; Elkington et al., 2002; Kress et al., 2014] allow for explicit modeling of radial
diffusive and nondiffusive transport due to waves and convective transport due to global electric field but
ignore local acceleration and use parameterized loss models.

In this study we first present observations of Van Allen Probes during March 2013 that illustrate the difference
in the dynamics of various electron populations in the inner magnetosphere. We also present the analysis of
electron drift trajectories at various energies with a focus on transitional energies. A qualitative comparison of
the VERB-4D simulations with Van Allen Probes observations is also presented.

2. Observations of the 17 March 2013 Storm

In this study we focus on observations and modeling of the 17 March 2013 storm. Some aspects of this storm
have been previously discussed by Foster et al. [2014] and Baker et al. [2014]. Examining individual satellite
passes, Foster et al. [2014] noticed that during the 17 March storm, significant acceleration of 50 keV to
500 keV occurred at 22:17 UT. They also noticed that the plasmapause was depleted down to L* of 3.5 to
4.5. Baker et al. [2014] presented dynamics of the 2.8 to 7.2MeV fluxes over the entire month of March
2013. They noticed that early March 2013 acceleration of ultrarelativistic electrons was associated with a
gradual inward radial diffusion caused by a high-speed solar wind stream. They noticed that the solar
eruption of the Active Region 1692 on the Sun produced a Class M.1 X-ray flare at 0650 UT on 15 March,
which caused the rapid depletion of ultrarelativistic electrons down to low L shells. Pitch angle distributions
at 2.8MeV indicated that the loss to the magnetopause [Shprits et al., 2006] likely contributed to this
depletion. Stronger dropouts were observed at higher energy [Baker et al., 2014]. After the storm, the fluxes
of ultrarelativistic electrons rapidly recovered for the entire outer belt.

Due to the difference in dominant acceleration and loss processes, the dynamics of the inner magnetospheric
electrons are strongly energy dependent. Figure 1 shows profiles of the electron flux evolution at four
different energies ranging from ring current to ultrarelativistic, observed by Van Allen Probes A and B in
March 2013.

There are distinct features in the evolution of the radial profiles of fluxes depending on the electron energy.
During the storm main phase when Kp is large and Dst is strongly negative (�132 nT), electron fluxes at ring
current energies of 50 keV and 200 keV are enhanced down to the inner zone. Even during weaker storms and
intensifications of activity as indicated by increased Kp, 50 keV fluxes show rapid intensifications that decay
on time scales of a few days or less. 200 keV particles show less variability but still respond to the storm on
1 March, 21 March, and 29 March.

While the division between the convection-dominated and radial diffusion-dominated inward transport has
been customary and convenient, there is, of course, no sharp boundary between these electron populations.
The fluxes of relativistic 1MeV and ultrarelativistic 4.2MeV electrons are not significantly injected by convec-
tion and drift around the Earth due to curvature and gradient drift and show quite different dynamics.
Relativistic and ultrarelativistic fluxes show dropouts during the 17 March storm and then become enhanced
over several days during the recovery phase.

As recently suggested by Shprits et al. [2013], ultrarelativistic energy electrons form a different population
of particles where scattering by hiss is weaker and scattering by electromagnetic ion cyclotron (EMIC)
waves plays a crucial role. Simulations also show that EMIC waves play an important role for the quiet time
decay of the ultrarelativistic electron dynamics [Drozdov et al., 2015]. The difference in physical processes
explains the unusual special structures often seen at ultrarelativistic energies [e.g., Baker et al., 2013, 2014]
that persist for a long time.
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There are clear differences in the evolution of ultrarelativistic and relativistic fluxes duringMarch 2013. The drop-
outs extend to lower L shells and aremore pronounced at ultrarelativistic energies. During 2weeks before the 17
March storm, relativistic fluxes show a slowly decaying peak at a constant radial distance of approximately 4.5RE,
while ultrarelativistic electrons show the split structure as during the September, 2012 storm and the inner edge
of the outer belt clearly indicate the dominance of the inward radial diffusion during that time period.

3. Drift Trajectories

Figure 2 illustrates the difference in convective transport between the lower energy and higher energy elec-
trons. Bounce-averaged drift velocities are calculated following Roederer [1970]:

<V>ba ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8mc2μ

p
cqτbB0

∇0K � e0 þ E � e0
qB0

; (1)

where τb is bounce period, B0 is a backgroundmagnetic field, e0 =B0/B0, c is speed of light, q is electron charge,
m is electron restmass, μ is first adiabatic invariant, E is the electric field, and K=second adiabatic invariant. Index 0
refers to the value in the equatorial plane, and all variables are in the SI system.We use the Volland-Stern electric
field model with a parameterization of Maynard and Chen [1975] and dipole magnetic field model.

At lower energy, the electron streamlines are close to the equipotential lines, and electrons are crossing
L shells, being injected inward on the nightside and leaving the inner L shells on the dayside. At higher
energies (e.g., >1000MeV/G), electron transport is dominated by the curvature and gradient drifts. In a
dipole field, most energetic electrons would undergo almost circular motion, and radial transport is dominated

Figure 1. Dynamics of the electron flux evolution during March 2013, at 50 keV, 200 keV, 1MeV observed by The Magnetic
Electron Ion Spectrometer (MAGEIS) instrument, and 4.2MeV observed by The Relativistic Electron-Proton Telescope (REPT)
instrument on Van Allen Probes A and B. Dynamic evolution of energetic and relativistic radial electron flux profiles is
illustrated. Different plasma populations clearly respond differently to the solar wind disturbances that are reflected in the
Kp and Dst indices at the bottom.
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by the radial displacements due to the fluctuations of magnetic and electric field that are commonly modeled
as a radial diffusion process. During relatively quiet geomagnetic conditions, 100MeV/G electrons show nearly
circular motion resembling the trajectories of relativistic electrons. However, as geomagnetic activity increases,
the effects of the convection electric field become more pronounced, and trajectories bend to get close to the
equipotential lines. In the next section we describe simulations of convection and radial diffusion, together
with pitch angle and energy diffusion by VLF waves and show that electrons at intermediate values of the
first adiabatic invariant can be transported by both convective transport and radial diffusion.

4. Convective and Diffusive Simulations

Currently, most of the 3-D Fokker-Planck diffusion codes [e.g., Su et al., 2011; Tu et al., 2013; Glauert et al., 2014]
follow the two-grid approach of Subbotin and Shprits [2009]. In this approach, radial diffusion simulations
were done on a grid of constant adiabatic invariants, while pitch angle and energy simulations were done
on a grid which is orthogonal in pitch angle and energy. Recently, Subbotin and Shprits [2012] suggested
performing 3-D simulations on one grid of modified adiabatic invariants. This approach allows the elimina-
tion of interpolation between the numerical grids which can either lead to numerical errors or, in the case
of accurate spline interpolation, cause unstable behavior of the code. The one-grid approach of Subbotin
and Shprits [2012] can be easily augmented to include a fourth variable, φ, which is magnetic local time
(MLT), and add another operator responsible for convection.

In this formulation, the evolution of four-dimensional Phase Space Density (PSD) f is solved in terms of radial
distance, MLT, and the first and second adiabatic invariants:

df
dt

¼ vφ
� �∂f

∂φ
þ vRh i∂f

∂R
þ 1
G

∂
∂L

G DLLh i∂f
∂L

þ 1
G

∂
∂V

G DVVh i∂f
∂V

þ DVKh i∂f
∂K

� �
þ 1
G

∂
∂K

G DKVh i∂f
∂V

þ DKKh i∂f
∂K

� �
� f
τ

(2)

Figure 2. Trajectories of electrons at different values of the first invariant: (a) 1 MeV/G, (b) 100MeV/G, and (c) 1000MeV/G,
and for 100MeV/G particles three different Kp values: (d) Kp = 4, (e) Kp = 5, and (f) Kp = 6. The red dashed line indicates
the location of the magnetopause [Shue et al., 1997], assuming the magnitude of the interplanetary magnetic field of
Bz =�2 nT and solar wind dynamic pressure of = 2 nPa. The colored solid lines indicate the trajectory of three different
electrons, from a starting position indicated by the filled circles. The black arrows show the velocity direction of electrons
for a given value of the adiabatic invariant, overlaid on contours of motion.

Geophysical Research Letters 10.1002/2015GL065230

SHPRITS ET AL. VERB-4D 9603



where φ is magnetic local time (MLT); R is radial distance from the Earth; L≡ 2 · π · Be/Φ (this form of the third
invariant is often denoted as L*) is inversely proportional to the third adiabatic invariantΦ; Be is the magnetic
field at Earth’s surface; K= J/(8 ·μ ·m0)

1/2, where J is the second adiabatic invariant, V≡μ/(K + 0.5)2, where μ is
the first adiabatic invariant; <vφ> and <vR> are bounce-averaged drift velocities; <DLL> <DVV>, <DKK>,
and <DVK> are bounce-averaged diffusion coefficients; G= (8 ·μ ·m0 · c

2)1/2/(K + 0.5)2/L2 is the Jacobian of

Figure 3. Simulations of μ = 100MeV/G, K= 0.11G0.5 RE electrons starting from an emptymagnetosphere as an initial condition. A constant boundary condition is used at
the outer boundary, see text for details. (a–c) Simulations using only convection, (d–f) simulations with convection and radial diffusion, (g–i) simulations with convection,
radial diffusion, and local diffusion, and (j) Dst for a period during March 2013. Columns correspond to snapshots of the electron PSD as shown in Figure 3j.
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the transformation from an adiabatic invariant system (μ, J, Φ); and f/τ, where τ represents the electron’s
lifetime losses. V and K are convenient for numerical calculations because K is independent of the particle’s
energy and V depends weakly on the particle’s pitch angle. To compute radial transport, we will use the radial
diffusion rates of Brautigam and Albert [2000].

The boundary condition is periodic in MLT. The inner boundary of the code is set at 1 RE, where the phase space
density is assumed to be zero due to the loss to the atmosphere. The outer boundary is set up for 10 keV to
10MeV at L=6.6, which allows for modeling a range of energies from tens of keV to multi-MeV in the heart
of the radiation belts. In the simulation presented in Figure 3, the boundary spectrum is taken from Subbotin
et al. [2011b] and based on an average flux spectrum from long-term observations on Polar and CRRES. The
boundary is kept constant for the duration of that simulation.

Figure 4. Radial fluxes as a function of time at a number of fixed energies and at an equatorial pitch angle of 50°. (a, b, e, and f) Van Allen Probes A and B spacecraft
MAGEIS observations and GOES 13 and GOES 15 observed fluxes at E = 0.1, 0.4, 0.7, and 1.0MeV, respectively. (c, d, g, and h) VERB-4D simulations of the evolution of
fluxes at E = 0.1, 0.4, 0.7, and 1.0 MeV, respectively.
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Figure 3 shows sensitivity simulations using constant outer boundary condition and including convection
only (a–c); convection and radial diffusion (d–f); and convection, radial diffusion, pitch angles, energy, and
mixed energy-pitch angle diffusion. Simulations with convection only during quiet and disturbed geomag-
netic conditions do not allow for significant injections of particles into the inner regions. Addition of radial
diffusion results in injection down to L= 4. Inclusion of the local acceleration and loss due to chorus waves
shows a gradual increase in fluxes in the recovery phase of the storm.

Figure 4 shows a comparison of Van Allen Probes observations with VERB-4D simulations at various energies.
For this simulation, the boundary conditions are set up at the radial distance R0 = 6.6 RE according to GOES 13
and GOES 15 measurements. GOES 13 and GOES 15 observations are taken at a 6min cadence and averaged.
The fluxes as a function of energy are first fitted to a power law which is used to interpolate between values
up to 1MeV. We extrapolate using a nearest approach to lower energies as the flux spectrum begins to flatten
out near 30 keV. We use an exponential fit to interpolate and extrapolate to fluxes above 1MeV. The EPEAD
integral channels are fitted to an exponential in order to compute differential fluxes. The pitch angle distribu-
tion below 500 keV is directly measured, which allows us to fit a functional form over the data in order to
cover all equatorial pitch angles. The fit takes two forms: for monotonically increasing flux with pitch angle,
we apply a sine fit up to the fourth order to extend the fit to 90°. A constraint based on absolute deviation
restricts the fitted function and reverts to a simple sine fit if no solution is found. For butterfly distributions,
we simply perform a nearest extrapolation from the highest measured pitch angle to 90°. The flux data are
then converted to PSD in invariant V and K coordinates and gridded to the model using a nearest neighbor
approach. The PSD at minimum V from GOES is then used to scale the lower V boundary at points inward of
the outer boundary using a steady state solution to the radial diffusion equation. For this initial study, we used
a dipole field model to infer phase space density at GEO. Clearly visible are periodic variations in boundary
fluxes at all energies, including fluxes at relativistic energies which are associated with the inaccuracies of the
dipole field. The boundary conditions are discussed in more detail in the supporting section.

At the lowest presented energy of 200 keV, the Van Allen Probes observations show an increase in fluxes
during 17 March and decay right after the main phase of the storm. In general, the model describes a simi-
lar evolution to the observed fluxes and reproduces the increase in fluxes down to L = 4 with a peak around
L= 5. However, the model predicts an earlier increase than is seen in the observations, most likely due to
the difference in MLT between the GOES spacecraft that is used for boundary conditions and Van Allen
Probes observations. At 400 keV, a visible increase in fluxes starts in the afternoon of 17 March and persists
longer than for a 200 keV stormtime increase, with a peak at approximately L = 4. Noticeable in the data and
model are an increase in the area of intense fluxes during the recovery phase, indicative of the biradial
transport of particles. At higher energies, the electron fluxes show similar dynamics with a prolonged
recovery and peak at around L= 4. The values of the poststorm increase predicted by VERB-4D are very
similar to the observed values by Van Allen Probes. The differences between the simulations and models
are most likely due to the simplified boundary conditions and neglected adiabatic variations. The results
of the model are only visually compared with data and not quantitatively, which is left for future and more
detailed studies. Current simulations also do not include simulations of the ultrarelativistic electrons, as such
simulations require inclusion of the EMIC waves to reproduce stormtime dropouts [Shprits et al., 2013] and
quiet time decay rates [Drozdov et al., 2015].

5. Summary

Observations of the evolution of fluxes during March 2013 clearly demonstrate that energetic, relativistic,
and ultrarelativistic electrons show very different dynamics. Modeling of the dynamics of these electron
populations with a single code that combines all the relevant physical processes is a challenging task.
The dynamics of energetic electrons are dominated by convective transport and loss, while at relativistic
and ultrarelativistic energies, the dynamics are dominated by radial transport, local acceleration, and loss.
Analysis of the drift trajectories of the energetic and relativistic electrons shows that electron trajectories
at transitional energies with the first invariant on the scale of ~100MeV/G may resemble ring current or
relativistic electron trajectories, depending on the level of geomagnetic activity. Sensitivity simulations
with VERB-4D show that electrons with transitional values of the first adiabatic invariant (~100MeV/G)
are simultaneously affected by convective and diffusive transport. While convective transport provides
injections around geosynchronous orbit, radial diffusion and local acceleration due to energy diffusion
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allow for further acceleration in the heart of the radiation belts and provide the source population for the
relativistic electrons and seed population for chorus waves.

The detailed comparison with observations at various energies can help validate the code and reveal the domi-
nant physical mechanisms. Four-dimensional simulations show similar dynamics as observationswith noted dif-
ferences are likely due to inaccuracies in the boundary conditions, as well as neglect of the realistic magnetic
field and adiabatic variations. The direct comparison is complicated by the fact that GOES observes fluxes only
at a particular MLT. Futuremodelingwill includemore comprehensive boundary conditions, a realistic magnetic
field, adiabatic variations, loss to the magnetopause, andmore realistic models of the electric field. Modeling in
the realistic field will also allow for estimation of the loss to the magnetopause and the outward transport
that will be caused by the inward gradient in phase space density. We will also be able to explore if additional
transport (e.g., due to localized electric field) is required to explain the dynamics of the ring current electrons.
Simulations with the VERB-4D code will allow comparison of simulations at various MLT with multipoint
observations provided by constellations of Van Allen Probes, Time History of Events and Macroscale
Interactions during Substorms (THEMIS), Cluster II, Magnetospheric Multiscale (MMS), and other missions.
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