PROGRESS

Use of systems based models for the forecasting of space weather

S. N. Walker[1], T. Arber[2], K. Bennett[2], M. Liemohn[3], B. van der Holst[3], P. Wintoft[4], N. Y. Ganushkina[5], and M. A. Balikhin[1]

[1] Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK
 [2] Dept Physics, University of Warwick, Coventry, UK
 [3] Climate and Space Sciences Engineering, University of Michigan, Michigan, USA
 [4] Swedish Institute of Space Physics, Lund, Sweden

[4] Swedish Institute of Space Physics, Lund, Sweden

[5] Finnish Meteorological Institute, Helsinki, Finland

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637302.

- Modeling methodologies
- NARMAX modeling
 - Kp
 - Electron fluxes at GEO
 - Electron dropout events

First principles, physics based models

Neural Network Approach

Modeling Methodologies

$$y(k) = F[y(k-1), ..., y(k-ny), System outputs$$
$$u(k), ...u(k-nu), System inputs$$
$$e(k-1), ...e(k-ne)] Noise/errors$$

F[] is a nonlinear function (polynomial, B-spline, radial basis function)

Two approaches

- Sliding window
 - Used to forecast 3, 6, 12, 24h ahead
 - Fixed length window to build model
 - Window moved 1 time step
 - Repeat
- Direct approach
 - One model for each forecast horizon
 - Trained Jan-Jun 2000
 - Validate Jul-Dec 2000

Ayala Solares, J. R., et al. (2016), Modeling and prediction of global magnetic disturbance in near-Earth space: A case study for *Kp* index using NARX models, *Space Weather*, *14*, 899–916, doi: 10.1002/2016SW001463

Кр

3

6

GSO e⁻ flux forecasts

GSO e⁻ flux forecasts

Model comparison

One day ahead forecasted fluxes >2 MeV electrons compared with NOAA REFM

Prediction Efficiency

$$\mathsf{PE} = 1 - \frac{1}{N} \sum \frac{(X_i - Y_i)^2}{\mathsf{Var}(X)}$$

Correlation function

$$C_{\log(SNB)} = \frac{1}{N} \sum_{i=1}^{N} \frac{(\log_{10}(F_{2MeV}(i)) - \langle \log_{10}(F_{2MeV}(i)) \rangle)(\log_{10}(F_{SNB}(i)) - \langle \log_{10}(F_{SNB}(i)) \rangle)}{\sqrt{Var(\log_{10}(F_{2MeV}))Var(\log_{10}(F_{SNB}))}}$$

	e ⁻ Flux		Log10(e ⁻ Flux)		
Model	PE	Corr	PE	Corr	
REFM	-1.31	0.73	0.70	0.85	
SNB ³ GEO	0.63	0.82	0.77	0.89	

Balikhin, M. A., et al. (2016), Comparative analysis of NOAA REFM and SNB3GEO tools for the forecast of the fluxes of high-energy electrons at GEO, *Space Weather*, *14*, 22–31, doi:10.1002/2015SW001303.

Electron Fluxes at GSO

Energy	Term 1	%ERR	Term 2	% ERR
90 keV	V(t)	97.0	V ² (t)	2.7
127.5 keV	V(t)	74.8	V(t-1)	22.2
172.5 keV	V(t-1)	65.7	V(t)	31.6
270 keV	V(t-1)	97.5	V²(t-1)	2.3
407.5 keV	V(t-1)	84.1	V(t-2)	13.7
625 keV	V(t-1)	75.9	V(t-2)	22.3
925 keV	V(t-2)	96.2	N(t)	0.3
1.3 MeV	V ² (t-2)	76.5	nV(t-1)	2.2
2.0 MeV	N(t-1)	53.7	nV(t-1)	13.6
1.8-3.5 MeV	N(t-1)	51.5	N ² (t-1)	15.1

Boynton, R. J., et al., (2013), The analysis of electron fluxes at geosynchronous orbit employing a NARMAX approach, J. Geophys. Res. Space Physics, 118, 1500–1513, doi: 10.1002/jgra.50192.

Which solar wind parameters/geomagnetic indices control the drop out of electron fluxes ?

L=4.2 (GPS orbit)

Energy	1^{st} Term	ERR
120 keV	$p(t-2)Dst(t-4)B_s(t-1)$	10.55
210 keV	$p(t-2)Dst(t-4)B_s(t-1)$	3.806
300 keV	$p(t-2)Dst(t-4)B_s(t-1)$	0.199
425 keV	$p(t-0)^2 Dst(t-0)$	0.1808
600 keV	$p(t-0)^2 Dst(t-0)$	6.566
800 keV	$B_{s}(t-1)^{3}$	36.71
1 MeV	$B_{s}(t-1)^{3}$	54.37
1.6 MeV	$B_{s}(t-1)^{3}$	61.08
2 MeV	$B_{s}(t-1)^{3}$	61.22
3 MeV	$B_{s}(t-1)^{3}$	61.24
4 MeV	$B_{s}(t-1)^{3}$	61.07
5 MeV	$B_{s}(t-1)^{3}$	61.27
6 MeV	$B_{s}(t-1)^{3}$	61.29
8 MeV	$B_{s}(t-1)^{3}$	61.1
10 MeV	$B_{s}(t-1)^{3}$	61.1

R. J. Boynton, 1 D. Mourenas, 2 M. A. Balikhin, 1, Electron flux dropouts at L ~ 4.2 from Global Positioning System satellites: Occurrences, magnitudes, and main driving factors Accepted J. Geophys. Res. (Space Physics), 10.1002/2017JA024523 L=6.6 (GEO orbit)

Energy	First Term		
24 keV	AE(t-1)		
31 keV	AE(t-1)		
42 keV	AE(t-1)		
63 keV	AE(t-2)n(t-1)		
90 keV	AE(t-2)n(t-1)		
128 keV	p(t-1)n(t-0)		
173 keV	p(t-1)n(t-0)		
270 keV	p(t-1)n(t-0)		
408 keV	p(t-1)n(t-0)		
625 keV	p(t-1)n(t-0)		
925 keV	p(t-1)n(t-0)		
1.3 MeV	$p(t-0)B_{s}(t-1)$		
2 MeV	$p(t-1)B_s(t-1)$		
2.7 MeV	p(t-1)n(t-0)		

Boynton, R. J., D. Mourenas, and M. A. Balikhin (2016), Electron flux dropouts at Geostationary Earth Orbit: Occurrences, magnitudes, and main driving factors, *J. Geophys. Res. Space Physics*, *121*, 8448–8461, doi: 10.1002/2016JA022916.

Coupling functions

Many solar wind-	Name	Coupling Function		Reference	
magnetosphere coupling functions have been proposed	$egin{array}{c} I_B & arepsilon & \ arepsilon & \ I_W & \ I_{SR} & \ I_{TL} & \ I_{TL} & \ I_N & \ I_V & \ \end{array}$	$VB_{s} VB^{2} \sin^{4}(\theta/2) VB_{T} \sin^{4}(\theta/2) PB_{T} \sin^{4}(\theta/2) P^{1/2} VB_{T} \sin^{4}(\theta/2) P^{1/2} VB_{T} \sin^{6}(\theta/2) V^{4/3} B_{T}^{2/3} \sin^{8/3}(\theta/2) P^{1/6} V^{4/3} B_{T} \sin^{4}(\theta/2) P^{1/6} V^{4/3} B_{T} \sin^{4}(\theta/2)$		Burton et al. [1975] Perreault and Akasofu [1978] Wygant et al. [1983] Scurry and Russell [1991] Temerin and Li [2006] Newell et al. [2007] Vasyliunas et al. [1982]	
 NARMAX was used to determine functions 7 function + Dst time lags (t-1),, (t-5) 	e the top 5	5 coupling	Coupling $p^{1/2}VB_T \sin^6(t)$ $VB_s(t-1)$ $n^{1/6}V^{4/3}B_T \sin^6(t)$ $p^{1/2}VB_T \sin^4(t)$ $D_{st}(t-2)$	Function $\theta/2$) $(t - 1)$ $n^4(\theta/2)(t - 1)$ $\theta/2$) $(t - 1)$	NERR (%) 31.32 12.76 10.30 8.37 7.23
Top 5 sets of parameters $p^{1/2}$, $n^4 B_T sin^4(\theta/2)$ and $B_T sin^6(\theta/2)$ comb Balikhin, M. A. et al. (2010), Data based quest for coupling function, Geophys. Res. Lett., 37, L2410	^{L/6} , V, V ^{4/3} , Dined by N or solar wind-m 07, doi:10.1029	B _s , IARMAX agnetosphere 0/2010GL045733	Coupling $p^{1/2}V^{4/3}B_T \sin^6$ $p^{1/2}V^2B_T \sin^6$ $n^{1/6}V^2B_T \sin^4$ $D_{st}(t-2)$ $p^{1/2}VB_T \sin^6(t-2)$	Function $h^{6}(\theta/2)(t-1)$ $h^{6}(\theta/2)(t-1)$ $h^{6}(\theta/2)(t-1)$ $h^{6}(\theta/2)(t-1)$	NERR (%) 5.46 3.18 3.15 2.96 2.77

Summary

In the presentation it has been shown that the systems methodology NARMAX may be used to

- Generate data based models for the forecast of space weather related parameters
- Provide some insight in to the physical processes occurring within the system

Thank you for your attention

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637302.

