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Abstract Up until recently, signatures of the ultrarelativistic electron loss driven by electromagnetic
ion cyclotron (EMIC) waves in the Earth’s outer radiation belt have been limited to direct or indirect
measurements of electron precipitation or the narrowing of normalized pitch angle distributions in the
heart of the belt. In this study, we demonstrate additional observational evidence of ultrarelativistic
electron loss that can be driven by resonant interaction with EMIC waves. We analyzed the profiles derived
from Van Allen Probe particle data as a function of time and three adiabatic invariants between 9 October
and 29 November 2012. New local minimums in the profiles are accompanied by the narrowing of
normalized pitch angle distributions and ground-based detection of EMIC waves. Such a correlation may
be indicative of ultrarelativistic electron precipitation into the Earth’s atmosphere caused by resonance
with EMIC waves.

1. Introduction

Wave-particle interactions causing loss and acceleration of electrons in the Earth’s radiation belts have been
extensively studied since the beginning of the space era (Imhof et al., 1977; Millan & Thorne, 2007; Shprits,
Elkington, et al., 2008; Shprits, Subbotin, et al., 2008; Thorne, 2010; Thorne & Kennel, 1971; Xiao et al., 2009,
2010). Recently, particular attention has been paid to the dynamics of very energetic ultrarelativistic electrons
(energy above ∼1–2 MeV) (e.g., Baker, Kanekal, Hoxie, Henderson, et al., 2013; Shprits et al., 2016; 2013, Xiao
et al., 2015). However, major mechanisms controlling this population are still under debate. The purpose of
this study is to provide additional observational evidence of ultrarelativistic electron loss due to local resonant
interaction with electromagnetic ion cyclotron (EMIC) waves.

The launch of the Van Allen Probes, formerly known as Radiation Belt Storm Probes (RBSP), on 30 August 2012
has led to significant progress in understanding the dynamics of ultrarelativistic electron population. The
Relativistic Electron-Proton Telescope (REPT) (Baker, Kanekal, Hoxie, Batiste, et al., 2013), which is a part of the
Energetic Particle, Composition, and Thermal Plasma (ECT) Suite (Spence et al., 2013) on board the satellites,
allows measuring the electron distribution of energies from ∼2 to ∼10 MeV and above and covers both inner
and outer belt regions from 1.2 RE to 5.8 RE . A few days after the launch, the Van Allen Probes detected the
unusual three-zone radiation belt structure (Baker, Kanekal, Hoxie, Henderson, et al., 2013). The third belt
(narrow “storage ring”) (Baker, Kanekal, Hoxie, Henderson, et al., 2013) persisting for almost a month was
formed by ultrarelativistic electrons at L∗ = ∼3.25 after the flux dropout on approximately 3 September
2012. Shprits et al. (2013) analyzed this unique event, modeling the electron dynamics with the Versatile
Electron Radiation Belt (VERB) code (Shprits et al. 2009; Subbotin & Shprits, 2009). They showed that EMIC
wave-induced electron scattering is responsible for the formation of the third belt, and the expanded plas-
masphere placed the belt in a different plasma environment, where electromagnetic waves weakly affect
ultrarelativistic electrons, and the third belt remained for tens of days. Long-term modeling results obtained
by Drozdov et al. (2015) using the VERB code showed that observed 3.6 MeV electron fluxes are significantly
overestimated if EMIC waves are not included in the simulations. Further comparison of the simulation results
with the observations of the 17 January 2013 storm (Shprits et al., 2016) confirmed that EMIC waves cause fast
local loss of the ultrarelativistic electrons in the outer belt.
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Previous theoretical studies suggested that EMIC waves can effectively scatter sub-MeV and MeV electrons
(Horne & Thorne, 1998; Summers & Thorne, 2003; Thorne & Kennel, 1971; Ukhorskiy et al., 2010). Supporting
the theoretical findings, a number of observational case studies used VLF transmitter and receiver systems,
riometers, balloons, and polar satellites to measure ultrarelativistic electron precipitation associated with
simultaneous EMIC wave detection by ground-based or satellite magnetometers (Blum et al., 2015; Clilverd
et al., 2007, 2015, Miyoshi et al., 2008; Rodger et al., 2008, 2015). Using a recently developed algorithm for
determination of precipitation events of sub-MeV and MeV electrons from Polar Orbiting Environmental
Satellites (POES) and Meteorological Operational (METOP-2) satellite (Carson et al., 2013), Hendry et al. (2016)
showed that 60% to 90% of precipitation events coincide with the waves detected on the ground. Yet the
observational studies of electron precipitation into the atmosphere suggested that sub-MeV and MeV elec-
trons can be scattered by EMIC waves, such studies consider only the electron population inside the loss cone,
leaving aside the effects of the waves on the pitch angle distribution of particles in the heart of the belt.

Usanova et al. (2014) investigated the correlation between ground-based EMIC wave observations from the
Canadian Array for Real-time Investigations of Magnetic Activity (CARISMA) (Mann et al., 2008) and the vari-
ability of the ultrarelativistic outer belt measured in situ by the Van Allen Probes. They found the correlation
between the observations of EMIC waves and narrowing of the normalized pitch angle distributions, which is
a clear tell-tale signature of EMIC wave-induced precipitation.

Another mechanism of electron loss affecting all populations of radiation belt particles is the loss into the
interplanetary medium driven by outward radial diffusion (Ohtani et al., 2009; Shprits et al., 2006; Turner et al.,
2012). This mechanism is most effective during compression of the magnetosphere when particles previously
trapped in the Earth’s magnetic field at high radial distances find themselves drifting along the open trajecto-
ries that cross the magnetopause. These particles become lost into the interplanetary medium on time scales
of the drift period, creating sharp negative gradients near the outer boundary of the outer belt. The sharp
gradients, in turn, result in fast particle transport away from Earth due to enhanced outward radial diffusion
driven by drift resonance of particles with ultralow frequency (ULF) waves. The loss into the interplanetary
medium should be carefully separated from the precipitation into the atmosphere if any loss mechanism in
the belts is investigated.

In this study, we present additional evidence for the ultrarelativistic electron loss in the heart of the outer belt
that can be driven by resonant interaction with EMIC waves and complement the signatures of EMIC wave
effects found by Usanova et al. (2014) for the time period from 9 October to 29 November 2012. We analyze
phase space densities (PSD), derived from Van Allen Probe observations as a function of time and three adi-
abatic invariants 𝜇, K , and L∗ (Roederer, 2012; Schulz & Lanzerotti, 1974), to distinguish reversible (adiabatic)
changes resulting from slow expansion and compression of the magnetic field from nonreversible (nonadi-
abatic) changes leading to particle loss or acceleration. The mechanisms causing nonreversible changes can
be further differentiated if the PSD is considered as a function of L∗ and time for constant 𝜇 and K (Green &
Kivelson, 2004; Reeves et al., 2013; Selesnick & Blake, 2000). In particular, local minimums in relativistic and
ultrarelativistic electron PSD profiles are a distinctive feature of fast local loss, which can be driven by EMIC
waves (Shprits et al., 2017). To provide observational evidence that EMIC waves scatter ultrarelativistic elec-
trons into the Earth’s atmosphere, we analyze such local minimums, narrowing of pitch angle distributions
and the occurrence of EMIC waves on the ground.

2. Van Allen Probe Flux Measurements From 9 October to 29 November 2012

The interval of enhanced ultrarelativistic electron flux in the outer belt between 9 October and 29 November
2012 was teemed with multiple events of enhanced EMIC wave activity observed on the ground (Usanova
et al., 2014) and gave us a good opportunity to gain insight into the processes driving the electron loss.
Figure 1 illustrates the dynamics of differential ultrarelativistic electron fluxes from 9 October to 29 November.
Note that the fluxes were averaged over the solid angle subtended by a whole sphere. Figure 1a shows the
evolution of Dst and Kp indices, and Figures 1b–1d present the fluxes measured by the REPT instrument on
board the Van Allen Probes. Figure 1e, adopted from Usanova et al. (2014), demonstrates the occurrence of
EMIC waves on the ground measured by CARISMA stations at L = 4–4.5. The red circles in Figure 1e denote
the days when EMIC waves were observed, while blue circles indicate the days when no EMIC wave activity
was detected.
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Figure 1. (a) Kp and Dst indices between 9 October and 29 November 2012, provided by OMNIWeb. (b–d) Differential
electron fluxes measured by REPT on board Van Allen Probes in 2.6, 3.4, and 5.2 MeV energy channels as a function of
time and L∗ computed using the TS07D magnetic field model (Tsyganenko & Sitnov, 2007). (e) The presence of EMIC
waves measured by CARISMA stations at L = 4–4.5.

The prominent storm time flux dropouts are observed on 13 October, 1 November, and 13–14 November.
The dropouts are accompanied by enhanced EMIC wave activity and minimums in the Dst index, which indi-
cates that EMIC wave-induced scattering, adiabatic changes associated with the changes in the magnetic field
configuration, magnetopause shadowing, and the loss into the interplanetary medium driven by outward
radial diffusion can be responsible for such flux variations. Interestingly, EMIC waves are also observed not
only during dropouts but also during the enhancement of the belt (e.g., 14–16 October) and intervals when
the flux remains almost unchanged (e.g., 7 November 2012). It is therefore necessary to distinguish between
competing loss and acceleration processes while performing analysis of EMIC wave effects on ultrarelativistic
electrons in the belt.

3. Data and Methods

In order to extract signatures of EMIC wave-driven ultrarelativistic electron loss from in situ Van Allen Probe
measurements, we applied the method proposed by Shprits et al. (2017). The method relies on the fact that
interacting locally with electrons, EMIC waves produce pronounced local minimums in PSD profiles for con-
stant first and second adiabatic invariants. Unless smoothed out by radial diffusion or local acceleration,
the minimums can persist for hours and days, and they can be derived from the Van Allen Probe ECT suite
observations.

We used 5 min averaged Magnetic Electron Ion Spectrometer (MagEIS) (Blake et al., 2013) and REPT data to
calculate electron PSD as a function of adiabatic invariants. The first adiabatic invariant 𝜇 has been calculated
using local magnetic field observations measured by the Electric and Magnetic Field Instrument Suite and
Integrated Science (Kletzing et al., 2013) on the satellites. To determine the invariants K and L∗ corresponding
to the local pitch angles and position of satellites, we utilized the TS07D magnetic field model (Tsyganenko &
Sitnov, 2007), which is implemented in the International Radiation Belt Environment Modeling (IRBEM) library
(Boscher et al., 2012). We calculated PSD for K = 0.1G1∕2RE , since this value of the second invariant roughly
corresponds to 51∘–55∘ pitch angles in the heart of the outer belt, and EMIC waves can efficiently resonate
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Figure 2. (a–c) Evolution of PSD profiles derived from RBSP-A flux measurements as a function of L∗ for K = 0.1G1∕2 RE
and 𝜇 = 300, 2,500, and 4,500 MeV/G on 2–3 November 2012 using the TS07D magnetic field model. The colors
represent the end times of successive inbound and outbound satellite passes. (d–f ) Energies corresponding to the
chosen 𝜇 and K calculated in the dipole field approximation.

with the ultrarelativistic electrons of such pitch angles (Summers & Thorne, 2003). We used bilinear cubic
interpolation to calculate PSD for particular values of 𝜇 and K for constant L∗.

4. Signatures of EMIC Wave-Driven Ultrarelativistic Electron Loss

Figure 2 illustrates the formation of local minimums on 2–3 November after the dropout of electron fluxes
on 1 November (see Figures 1b–1d). Figures 2a–2c show the evolution of relativistic (𝜇 =300 MeV/G) and
ultrarelativistic (𝜇 = 2,500 and 4,500 MeV/G) PSD profiles. Figures 2d–2f depict energies corresponding to
the chosen adiabatic invariants in the dipole field approximation. Predropout ultrarelativistic profiles, derived
from RBSP-A measurements at around 08:45, 2 November, have wide pronounced peaks at L∗ = 4 and nega-
tive gradients above L∗ =∼ 4.3 (see dark blue lines in Figures 2b and 2c). The next two passes of RBSP-A show
an enhancement of both relativistic and ultarelativistic electron PSD at higher L shells. The formation of local
minimums can be noticed at the following satellite pass at L∗ =∼ 4.7 around 22:10. The passes at ∼07:10 and
∼11:45 on 3 November show enhancement of ultrarelativistic electron PSD above L∗ = ∼ 4.5 without notice-
able changes in the depth and width of the minimums. The subsequent passes demonstrate fast deepening
of local minimums at L∗ = 4.7, while profiles at L∗ = 5.5 do not show significant variations. Relativistic elec-
tron profiles, presented in Figure 2a, preserve monotonic behavior for the considered interval, showing only
a slow gradual decrease.

To take into account uncertainties associated with calculations of K and L∗ that globally depend on mag-
netic field configuration, we analyzed PSD profiles computed using T89 (Tsyganenko, 1989), T96 (Tsyganenko,
1995), T01S (Tsyganenko, 2002), and T04S (Tsyganenko & Sitnov, 2005) magnetic field models. Supporting
information Figures S1–S4 correspond to the profiles derived on the basis of these models. The figures
show that the local minimums in ultrarelativistic electron PSD profiles are observed independently of any
known advanced magnetic field model, while relativistic electron profiles demonstrate a monotonic decrease
with L∗.

The simultaneous formation of local minimums in ultrarelativistic electron PSD profiles at L∗ = 4.7, the
decrease between L∗ = 4.5 and 5, and slight changes at L∗ = 5.5 imply a fast local loss process operating in
a narrow region of L shells. The observed minimums could not be produced by magnetopause shadowing

ASEEV ET AL. ULTRARELATIVISTIC ELECTRON LOSS 4



Journal of Geophysical Research: Space Physics 10.1002/2017JA024485

Figure 3. (a–h) Evolution of PSD profiles during periods when the most pronounced minimums were detected. The
profiles are derived from RBSP-A flux measurements as a function of L∗ for K = 0.1 G1∕2 RE and constant 𝜇 computed
using the TS07D magnetic field model. Colors represent the end times of successive inbound and outbound
satellite passes.

or by the local interaction with hiss or chorus waves, which is effective on the much longer time scales than
the Van Allen Probe orbital period and characterized by a very weak dependence on radial distance (Orlova
& Shprits, 2014; Orlova et al., 2014; Shprits et al., 2017). EMIC waves, resonating with ultrarelativistic electrons,
can locally scatter electrons into the loss cone and form the minimums, as presented in Figures 2b and 2c. The
absence of such minimums in the profiles of less energetic electrons (Figure 2a) is additional evidence of an
EMIC wave-driven nature of loss, since less energetic electrons do not interact with EMIC waves according to
the concept of minimum resonant energy (e.g., Summers & Thorne, 2003).

We analyzed PSD profiles for 𝜇 = 2,500, 3,500, and 4,500 MeV/G from 9 October to 29 November 2016 and
found eight events when noticeable local minimums were formed for at least one value of 𝜇 in the chosen
range. Figures 3a–3h show the profiles for the values of the first invariant 𝜇 corresponding to the most pro-
nounced minimums observed. The minimums differ in their position, depth, and width. The minimums are
located between L∗ = 4 and 5, and the width varies from ∼0.3 to ∼1 (in L shell units). The minimums appear
simultaneously with the prominent dropouts (Figures 3c, 3f, and 3h) of PSD, or when no large variations of
PSD detected (Figures 3a, 3b, 3d, 3e, and 3g). To diminish uncertainties associated with the magnetic field
model, we also analyzed PSD profiles calculated using the T04S magnetic field model for identified events.
Supporting information Figure S5 shows that the change in the magnetic field model mostly does not affect
local minimums, though their shape can be slightly different.

Figure 4 summarizes the signatures of EMIC wave effects on ultrarelativistic electrons in the outer belt for the
studied period. Figure 4a illustrates the occurrence of EMIC waves on the ground and is similar to Figure 1e.
Figure 4b shows the presence of new pronounced local minimums in𝜇 =2,500, 3,500, or 4,500 MeV/G profiles.
Red markers (“Yes”) indicate days when the new local minimum was formed for at least one value in the chosen
range, and blue markers (“No”) represent days without local minimums. Figures 4c–4e illustrate the pitch
angle distributions of differential fluxes normalized by the equatorial flux at L∗ = 4.5 in the energy channels
2.6, 3.4, and 5.2 MeV.
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Figure 4. (a) The presence of EMIC waves measured by CARISMA stations between 9 October and 29 November 2012.
(b) The formation of new local minimums in PSD profiles for the same time period. (c–e) The pitch angle distributions of
directional differential fluxes normalized by the equatorial flux as a function of time and pitch angles measured by Van
Allen Probes in 2.6, 3.4, and 5.2 MeV energy channels at L∗ = 4.5 ± 0.1.

New local minimums are formed during intervals of high EMIC wave activity, demonstrating strong correlation
with the detection of EMIC waves on the ground (compare red dots in Figures 4a and 4b). The formation of
local minimums also coincides with the narrowing of pitch angle distributions, produced by the resonant
interaction with EMIC waves (Usanova et al., 2014). The simultaneous formation of local minimums, narrowing
of the distributions, and EMIC wave detection on the ground is the observational evidence that EMIC waves
not only change the shape of the normalized pitch angle distribution but may also result in particle loss.

5. Discussion

In this study, we analyzed 51 days of data measured by REPT on board the Van Allen Probes and found eight
events of the formation of minimums in ultrarelativistic electron PSD profiles. The events were accompa-
nied by the narrowing of normalized pitch angle distributions and EMIC wave detection on the ground (see
Figure 4). Such correlation shows from the statistical point of view that the new local minimums have an EMIC
wave-driven nature, as was found from the physical principles by Shprits et al. (2017). Complementing the
findings of Usanova et al. (2014), which demonstrate that the narrowing of the pitch angle distributions coin-
cides with EMIC wave measurements, the formation of new local minimums may indicate EMIC wave-induced
scattering of ultrarelativistic electrons.

The new local minimums not only provide evidence of ultrarelativistic electron loss but can also help identify
EMIC wave occurrence in space. Since the minimums are the response of the electrons to the wave activity,
they are the explicit manifestation of EMIC waves even if wave measurements are not available or spacecraft
is not in the region of the waves. Therefore, the new minimums can be used to support direct observations of
the waves or to reveal EMIC waves that cannot be observed on the ground or in situ. Seven of eight local mini-
mums found between 9 October and 29 November 2012 serve as additional evidence of EMIC wave presence,
while only one local minimum, which appeared on 2 November after the previous minimum on 1 November
vanished, was not accompanied by EMIC waves and can be considered a potential indirect signature of the
waves (see Figure 4).
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Figure 5. The last closed drift shell computed for equatorially mirroring particles using the TS07D magnetic field model.
The gray shadowed regions correspond to significant storm time dropouts of ultrarelativitic electron fluxes at L∗ = 5.

The duration of EMIC waves can be estimated from electron flux observations (converted to PSD) in case of
deepening minimums as was discussed by Shprits et al. (2017). The deepening minimum in ultrarelativistic
electron PSD profiles indicates that local loss induced by EMIC waves dominates over the acceleration pro-
cess driven by radial diffusion that tends to smooth out the minimum. In this case, EMIC waves are present
in the region of the deepening minimum at least as long as the deepening minimum is observed. However,
if the minimum does not change its depth or the depth decreases, it is hard to distinguish EMIC wave effects
on radiation belt electrons from the radial diffusion influence using only flux observations, and more detailed
analysis involving EMIC wave parameters and radial diffusion rates is required. For this reason, we do not con-
sider the question of EMIC wave duration in the current study and concentrate only on EMIC wave presence,
which can be evident from the event of new local minimum formation.

The analysis of minimums can be complicated by different loss and acceleration processes that occur simul-
taneously with EMIC waves. For instance, Figure 3b shows the acceleration of particles after the minimum is
formed at ∼12:45 on 16 October. In this case, the acceleration over the wide L∗ range may accompany the loss
of ultrarelativistic particles at L∗ = ∼ 4.6. Electron acceleration may render the minimums more shallow that
is harder to detect visually or by using an automated algorithm.

For some events, EMIC waves were observed at times when local minimums are not seen in the data. That can
be explained by the action of radial diffusion smoothing out the minimums, competition with local acceler-
ation, or nonoptimal spectral properties of the waves for the efficient electron scattering. For instance, if the
local minimum is formed at high L shells, it can be suddenly destroyed by magnetopause shadowing, as was
detected on 12 November (see supporting information Figure S6). Acceleration due to inward radial diffusion
or local interaction with nightside chorus waves can lead to the increase in PSD and smoothing out the mini-
mums (see supporting information Figure S7 illustrating the disappearance of the minimums on 2 November).
If competing processes significantly distort the minimums on time scales less than half of the Van Allen Probe
period, the local minimums can be hardly observed, and therefore, their formation is detected more rarely
than EMIC waves.

The local minimums and narrowing of pitch angle distributions are observed during the intervals of promi-
nent storm time flux dropouts, indicating that EMIC waves can contribute to the noticeable flux decrease. It
is necessary, however, to estimate the relative importance of EMIC wave-induced loss in the outer belt and
the loss into the interplanetary medium driven by outward radial diffusion. Figure 5 shows the last closed
drift shell calculated for equatorially mirroring electrons using the TS07D magnetic field model. To calculate
the last closed drift shell, we find the farthest from the Earth magnetic field line that has only one local min-
imum at the noon magnetic longitude and calculate L∗ corresponding to a given K value. This approach is
implemented because of the limitations of IRBEM model computational framework to deal with double min-
imum field lines and provides an approximation of the last closed drift shell, which likely is at slightly higher
L shells. A gray background color in Figure 5 marks the periods when the significant storm time dropouts of
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Figure 6. Evolution of electron fluxes at L∗ = 5 ± 0.25 measured by MagEIS and REPT instruments on board the RBSP-A
during the most significant storm time dropouts that occurred on (a, d) 13 October, (b, e) 1 November, and (c, f ) 13–14
November. The fluxes are averaged over the satellite orbital period. The gray shaded regions correspond to significant
storm time dropouts of ultrarelativistic electron fluxes.

the ultrarelativistic electron fluxes were observed at L∗ = 5. As can be clearly seen from the figure, all storm

time events were accompanied by the sharp decrease of the last closed drift shell, which may indicate the

enhanced electron loss into the interplanetary medium.

Figure 6 illustrates electron fluxes measured by the RBSP-A at L∗ = 5 and averaged over the satellite orbital

period for the storms that occurred on 13 October, 1 November, and 13–14 November. The storms on

13 October and 13–14 November are characterized by a simultaneous dropout in electron fluxes from

∼100–200 keV to several MeV energies (gray shaded regions in Figures 6a and 6d and Figures 6c and 6f),

which can be indicative of the radiation belt variations associated with changes in magnetic field configu-

ration. The event on 1 November, however, shows a significant decrease of multi-MeV electron fluxes and a

simultaneous increase in ∼100–800 keV fluxes (see Figures 6b and 6e). The flux enhancement can be driven

by electron injections from the plasma sheet into the radiation belt region, concealing any possible effects of

magnetopause shadowing on such electron population. Modeling studies (e.g., Drozdov et al., 2015; Kersten

et al., 2014; Shprits et al., 2016) are required for further understanding of the balance between EMIC wave loss,

loss into the interplanetary medium, and the electron source population injected at the nightside.

We emphasize the existence of essential coherence between EMIC wave observations and new local mini-

mums in PSD profiles of ultrarelativistic electrons. Further studies are required for detailed understanding of

correlations between the waves and the minimums, conditions under which the minimums are formed, and

dependence of local minimum parameters on EMIC wave properties.
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