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Abstract. Severe geomagnetic disturbances can be hazardous for mod-

ern technological systems. The reliable forecast of parameters related to the

state of the magnetosphere can facilitate the mitigation of adverse effects of

space weather. This study is devoted to the modeling and forecasting of the

evolution of the Kp index related to global geomagnetic disturbances. Through-

out this work the Nonlinear AutoRegressive with eXogenous inputs (NARX)

methodology is applied. Two approaches are presented: i) a recursive slid-

ing window approach, and ii) a direct approach. These two approaches are

studied separately and are then compared to evaluate their performances.

It is shown that the direct approach outperforms the recursive approach, but

both tend to produce predictions slightly biased from the true values for low

and high disturbances.
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1. Introduction

The operation of many modern technological systems is vulnerable to

space weather disturbances. Severe geomagnetic disturbances, such as mag-

netic storms, can have severe adverse effects on power grids, navigation

systems and affect satellite drag. Forecasts of space weather hazards can

assist reliable operation of these technological systems. However, a phys-

ical model of the solar-terrestrial system that can be used to forecast the

evolution of the magnetosphere has not been developed yet, because of the

complexity of the dynamical processes involved.

The Kp index is one of the most widely used indices for quantifying

geomagnetic activity. It stands for planetarische Kennziffer, which means

planetary index in German. Thomsen [2004] concluded that the Kp index

is a good measure of the strength of magnetospheric convection because of

its dependence on the latitude of the auroral current region. This index

is computed by taking the weighted average of K indices at 13 ground

magnetic field observatories. The values of Kp range from 0 (very quiet)

to 9 (very disturbed) in 28 discrete steps, resulting in values of 0, 0+, 1-,

1, 1+, 2-, 2, 2+, ..., 9 [Wing et al., 2005].

The Kp index is known to be correlated with solar wind observations

[Newell et al., 2007; Elliott et al., 2013]. This has enabled the development

of models that attempt to forecast Kp. The most popular models are
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based on artificial neural networks, which are considered black-box models

[Detman and Joselyn, 1999; Boberg et al., 2000]. For instance, in Wing

et al. [2005], three neural networks were trained with solar wind data and

are now used to nowcast Kp index, producing hourly and 4-hourly forecasts

of theKp, updated every 15 minutes. In Bala and Reiff [2012], an improved

neural network was trained using the Boyle index in order to generate 1-,

3- and 6-hour ahead predictions. The Liu Kp model consists of a neural

network trained with autoregressive values of Kp and solar wind data, and

is able to predict Kp values up to 3.5 hours in advance [Liu et al., 2013]. A

comparative study between neural networks and support vector machines

was done in Ji et al. [2013]. These authors found that the best model is

a neural network trained with the same inputs as the Liu Kp model. A

probabilistic approach was taken in Wang et al. [2015] where the Kp range

is divided in 4 groups and 1268 models were compared in terms of accuracy,

reliability, discrimination capability, and forecast skill.

In general, there are two approaches for the modelling of magnetic dis-

turbances. The first one consists of the derivation of a mathematical model

that contains comprehensive physical insight into all events and processes

that take part in space weather dynamics and disturbances [Wei et al.,

2004a]. Such a model can then be used to analyse and forecast future

events. Nevertheless, it is obvious that such a model is intractable to ob-
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tain given the difficulty to fully describe the intrinsic mechanics. The sec-

ond is a data-based modelling or system identification approach. System

identification is an interesting research area with important applications in

science and engineering. It consists in finding a mathematical model from

discrete-time observational data in order to characterise the behaviour of a

system [Billings , 2013; Wei et al., 2004a].

Since the 1980s, several approaches have been developed in the nonlinear

realm of system identification given the fact that most real world prob-

lems are nonlinear in nature and conventional linear modelling techniques

are not sufficient to characterize nonlinear processes of interest [Pope and

Rayner , 1994; Billings , 2013]. One popular approach is the Nonlinear Au-

toRegressive with eXogenous inputs (NARX) methodology, which has been

successfully used to identify nonlinear systems [Billings , 2013; Boaghe et al.,

2001; Balikhin et al., 2011]. The NARX approach can detect an appropri-

ate model structure and select the most important model terms from a

dictionary consisting of a great number of candidate model terms.

In recent years, several variants have been proposed that improve the

performance of the original NARX algorithm. Such variations include the

use of more complex and flexible predefined functions such as wavelets

[Alexandridis and Zapranis , 2013; Billings and Wei , 2005a, b], radial basis

functions [Billings et al., 2007; Wei et al., 2007, 2004a], and ridge basis
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functions [Wei et al., 2015], together with an improved search mechanism

such as the common model structure selection [Wei and Billings , 2008a;

Li et al., 2013, 2015], iterative search [Guo et al., 2015a], incorporation

of weak derivatives information [Guo et al., 2015b], and other dependency

metrics [Koller and Sahami , 1995; Billings and Wei , 2007;Wei and Billings ,

2008b; Wang et al., 2013; Speed , 2011; Reshef et al., 2011; Székely et al.,

2007; Székely and Rizzo, 2013; Piroddi and Spinelli , 2003; Ayala Solares

and Wei , 2015].

The NARX approach produces transparent and interpretable models in

which the contribution of each model term to the output signal can be eval-

uated. This methodology has been previously used to model space weather

phenomena. For example, it was used to model the evolution of energetic

electrons fluxes at geostationary orbit [Balikhin et al., 2011], to obtain the

most influential coupling functions that affect the evolution of the magneto-

sphere [Boynton et al., 2011], to predict the Dst index using multiresolution

wavelet models [Wei et al., 2004a], to build a multiscale radial basis func-

tion network to forecast the geomagnetic activity of the Dst index [Wei

et al., 2007], and to unravel the time varying relationship between the solar

wind and the SYM-H index [Beharrell and Honary , 2016], among others.

Furthermore, NARX models can be used to compute the generalized fre-

quency response functions (GFRFs) in order to perform frequency domain
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analysis [Billings , 2013]. This technique has been used previously to study

the spectral properties of the Dst index dynamics [Balikhin et al., 2001] and

to identify types of nonlinearities involved in the energy storage process in

the magnetosphere [Boaghe et al., 2001].

In this paper we investigate the use of NARX models to forecast the Kp

index. In particular we are interested in forecasts at four different horizons:

3, 6, 12 and 24 hours ahead. To do so, we explore two approaches. The

first one consists of a recursive sliding window scheme in which we employ

a window period of 6 months to train a model and use it to forecast future

values based on previous predictions. The second approach involves the

identification of a specific model for each horizon of interest using a fixed

dataset of 6 months.

This paper is organised as follows. Section 2 contains a brief summary of

the nonlinear system identification methodology, together with a discussion

of the Orthogonal Forward Regression algorithm. In section 3 the dataset

used for the analysis is described. The NARX recursive approach is de-

veloped in section 4, while section 5 is dedicated to the direct approach.

Section 6 compares both approaches. The work is concluded in section 7.

2. Nonlinear System Identification

The aim of the system identification modelling approach is to find a model

from observational data that can capture as close as possible the relation-
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ship between a system input and output [Söderström and Stoica, 1989;

Billings , 2013]. Linear system identification has been a popular, widely

used approach. Nevertheless, the high complexity of most real-life systems

compromise the linearity assumption [Pope and Rayner , 1994]. To over-

come this issue, several studies have been performed in the nonlinear realm

[Billings , 2013]. In particular, the Nonlinear AutoRegressive with eXoge-

nous inputs (NARX) methodology has become a powerful tool for nonlinear

system identification problems [Billings , 2013; Wei et al., 2004a, b; Rashid

et al., 2012].

Model structure detection is a challenging task in dynamic system identi-

fication. This topic has been studied extensively and a vast amount of infor-

mation can be found in the literature. Model structure detection has been

tackled using different methods, such as clustering [Aguirre and Jácôme,

1998; Feil et al., 2004], the Least Absolute Shrinkage and Selection Op-

erator (LASSO) [Kukreja et al., 2006; Qin et al., 2012], elastic nets [Zou

and Hastie, 2005; Hong and Chen, 2012], genetic programming [Sette and

Boullart , 2001; Madár et al., 2005], the Orthogonal Forward Regression

(OFR) using the Error Reduction Ratio (ERR) approach [Wei et al., 2004b],

and the bagging methodology [Ayala Solares and Wei , 2015]. The second

step is parameter estimation, which is typically performed using the tradi-

tional least squares method, gradient descent and the Metropolis-Hastings
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algorithm [Baldacchino et al., 2012; Teixeira and Aguirre, 2011]. The final

step is model validation, for which several authors have developed differ-

ent approaches. In Billings and Voon [1986], a set of statistical correlation

tests have been developed that can be used for validation of a nonlinear

input-output model.

2.1. Appropriate Model Term Selection

Consider the NARX model:

y (k) = f
(
y (k − 1) , . . . , y (k − ny) , u (k − 1) , . . . , u (k − nu)

)
+ e (k) (1)

where f (·) is a function to be determined from data, u (k) and y (k) are

the system input and output signal respectively, e (k) is system noise (with

k = 1, 2, . . . , N), and the maximum lags for the input and output signals

are nu and ny [Wei and Billings , 2008b]. Most approaches assume that the

function f (·) can be approximated by a linear combination of a predefined

set of functions φi

(
ϕ (k)

)
, therefore equation (1) can be expressed in a

linear-in-the-parameters form

y (k) =
M∑
i=1

θiφi

(
ϕ (k)

)
+ e (k) (2)

where θi are the coefficients to be estimated, φi

(
ϕ (k)

)
are the

predefined functions that depend on the regressor vector ϕ (k) =
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[
y (k − 1) , . . . , y (k − ny) , u (k − 1) , . . . , u (k − nu)

]T
of past outputs and

inputs, and M is the number of functions in the set.

The most popular algorithm for NARX modelling is the Orthogonal For-

ward Regression (OFR) algorithm [Guo et al., 2015a; Billings , 2013]. OFR

is a stepwise algorithm [Billings et al., 1989], which follows a recursive-

partitioning procedures [Dietterich, 2002] to identify a parsimonious NARX

model [Wei and Billings , 2008b; Aguirre and Letellier , 2009]. One of the

most commonly used NARX models is the polynomial NARX representa-

tion, where equation (2) can be written as

y (k) = θ0 +
∑n

i1=1 θi1xi1 (k) +
∑n

i1=1

∑n
i2=i1

θi1i2xi1 (k)xi2 (k) + · · ·
+
∑n

i1=1 · · ·
∑n

i`=i`−1
θi1i2...i`xi1 (k)xi2 (k) . . . xi` (k) + e (k)

(3)

where

xm (k) =

{
y (k −m) 1 ≤ m ≤ ny

u (k −m+ ny) ny + 1 ≤ m ≤ n = ny + nu

(4)

and ` is the nonlinear degree of the model. A NARX model of order `

means that the order of each term in the model is not higher than `. The

total number of potential terms in a polynomial NARX model is given by

M =

(
n+ `
`

)
=

(n+ `)!

n! · `!
(5)

c©2016 American Geophysical Union. All Rights Reserved.



The OFR algorithm performs a stepwise regression procedure to identify

the most significant model terms. To achieve this, it uses the Error Re-

duction Ratio (ERR) index to measure the significance of each candidate

model term [Billings , 2013]. This index can be evaluated by calculating

the normalised energy coefficient C (x,y) between two associated vectors x

and y [Billings and Wei , 2007]

C (x,y) =

(
xTy

)2
(xTx) (yTy)

(6)

In recent years, several variants of the algorithm have been proposed that

modify the predefined functions, the dependency metric or the search mech-

anism in order to enhance its performance. In particular, the ERR index

only detects linear dependencies; so new metrics have been proposed to

capture nonlinear dependencies [Billings and Wei , 2007; Wei and Billings ,

2008b], i.e. entropy, mutual information [Koller and Sahami , 1995; Billings

and Wei , 2007; Wei and Billings , 2008b; Wang et al., 2013], simulation er-

ror [Piroddi and Spinelli , 2003] and distance correlation [Ayala Solares and

Wei , 2015].

Most of these variants are able to obtain good one-step ahead (OSA)

predictions,
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ŷ (k) = f
(
y (k − 1) , y (k − 2) , . . . , y (k − ny) , u (k − 1) , u (k − 2) , . . . , u (k − nu)

)
(7)

However, because the NARX model (1) depends on past outputs, a more

reliable way to check the validity of the model is through the model pre-

dicted output (MPO), which uses past predicted outputs to estimate future

ones, and to provide details about the stability and predictability range of

the model,

ŷ (k) = f
(
ŷ (k − 1) , ŷ (k − 2) , . . . , ŷ (k − ny) , u (k − 1) , u (k − 2) , . . . , u (k − nu)

)
(8)

In the literature, some authors have adapted the original OFR algorithm

to optimize directly the MPO in order to obtain a better long-term predic-

tion. However these modified versions tend to be computationally expensive

during the feature selection step, and a much better alternative is to use

the iterative or ultra-orthogonalisation approach [Guo et al., 2015a, b].

Furthermore, in many real applications, multiple step-ahead predictions

are of interest. For an autonomous system (e.g. a time series process with-

out external input), the system output value at the current time instant

k, i.e. y (k), may be predicted using previous observations at time instants

k − s, k − s − 1, etc., and the predicted value ŷ (k) is called the s-step
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ahead prediction. For an input-output system, the s-step ahead predic-

tion ŷ (k) is often estimated using previous output measurements y (k − s),

y (k − s− 1), ... , and previous input values u (k − 1), u (k − 2), ... , etc.

So, for an input-output system model, the s-step ahead prediction is de-

fined with respect to the system output; it is actually still one-step ahead

prediction with respect to the system input.

3. Dataset description

Every three hours throughout the day, 13 ground-based magnetic field

observatories located at geomagnetic latitudes between 48o and 63o around

the world, record the largest magnetic change that their instruments mea-

sure. This change is denoted as the K index, which is given on a quasi-

logarithmic scale from 0 (< 5nT ) to 9 (> 500nT ) [Boberg et al., 2000]. The

average of these observations is known as the Kp index. This determines

how disturbed the Earth’s magnetosphere is on a scale that goes from 0

(very quiet) to 9 (very disturbed) in 28 discrete steps, resulting in values

of 0, 0+, 1-, 1, 1+, 2-, 2, 2+, ..., 9 [Boberg et al., 2000; Wing et al., 2005]

. In this paper, these values are rescaled to be represented by the numbers

0, 0.3, 0.7, 1, ..., 9.

In general, large Kp values can indicate a more active terrestrial magne-

tosphere due to a solar storm, or a sudden rearrangement of the Earth’s

magnetosphere due to the solar wind .
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The datasets used in this paper consist of the variables shown in Table

1. These were measured during the year 2000. The inputs are taken from

the low resolution OMNI dataset, which consist of hourly average near-

Earth solar wind magnetic field and plasma data from several spacecraft

in geocentric or L1 (Lagrange point) orbits. The data period used for this

study employed four spacecraft: IMP 8, WIND, Geotail and ACE. The

output is the Kp index which, as mentioned before, is measured every

three hours. In order to match the time resolutions between the input and

output signals, the observedKp values are interpolated to 1-hour resolution

by simply repeating the last measured value during the next two hours.

Given that the variable of interest is the Kp index, its distribution for

year 2000 is shown in Fig. 1. This highlights that high values of Kp are

rare, which makes their prediction a challenging task.

4. Sliding Window Models and Recursive Predictions

This approach uses a window of a fixed length to build a single model

using the data within the window frame as the training set. This model is

used to make 3-, 6-, 12- and 24-hour ahead predictions based on the model

simulated values (i.e. the model predicted outputs - MPOs) as shown in

equation (8). Once this is done, the window is moved forward by one time

step, a new model is built and subsequently used to forecast the next 3-,
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6-, 12- and 24-hour ahead Kp values. This way, the training and validation

sets are mutually exclusive.

Every time the window frame moves forward, a new NARX model is

trained. The training process uses the adaptive orthogonal search algo-

rithm described in Billings and Wei [2008]. A nonlinear model term and

variable selection procedure proposed in Wei et al. [2004b] was applied, and

numerical experimental results suggested that ny = 4 and nu = 2 was an

appropriate choice. Accordingly, the NARX model structure is given by

K̂p (k) =f
(
Kp (k − 1) , . . . , Kp (k − 4) ,

V (k − 1) , V (k − 2) , Bs (k − 1) , Bs (k − 2) ,

V Bs (k − 1) , V Bs (k − 2) , p (k − 1) , p (k − 2) ,√
p (k − 1),

√
p (k − 2)

)
(9)

where f (·) is chosen to be a polynomial of nonlinear degree ` = 2, Kp (k)

is the measured Kp index at time k, and K̂p (k) is the predicted Kp index

at time k. In our analysis, the window length is of 6 months, therefore

the initial training and validation sets correspond to the first and second

half of year 2000, respectively. As the window frame moves forward, the

validation set size decreases. The reason to choose a window length of 6

months is because for the NARX methodology typically just a few hundred

data samples are required to estimate a model, which can be important
c©2016 American Geophysical Union. All Rights Reserved.



in many applications where it is unrealistic to perform long experiments

[Billings , 2013].

The results for this approach are shown in Fig. 2. Here it can be seen

that there is a bias for low and high magnetic disturbances. Furthermore,

for high values of Kp (Kp ≥ 8) the error bars become odd and difficult to

interprete. This is due to the fact that there are very few occurrences of

high-value Kp indexes, so few predictions are made in such cases and hence

they tend to be underpredicted. Such characteristics have been previously

reported in Detman and Joselyn [1999]; Boberg et al. [2000], where it is

argued that a model will perform well for the most common training values,

while predictions for others will be poor.

To quantify our results, the root mean squared error (RMSE), correlation

coefficient (ρ) and prediction efficiency (PE) are computed. The latter is

defined as

PE = 1− σ2
error

σ2
measured

(10)

where σ2
measured is the variance of the measured Kp values, and σ2

error is the

variance of the error between the measured Kp values and the predicted

ones. These metrics are shown in Table 2.

The error time series for each of the four horizons of interest are shown

in Fig. 3. It can be seen that the error is notoriously high at the middle of
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July. Fig. 4 shows a glimpse of this period where it can be seen that high

activity of the terrestrial magnetosphere was recorded between July 13th-

17th, 2000. Such an activity was not properly forecasted by this approach.

In addition, Table 3 shows a statistical summary of the error time series

in Fig. 3. In general, it can be concluded that this approach tends to

overpredict the Kp index given that both the median and the mean are

negative. Furthermore, as the number of hours to predict ahead increases,

the forecasts are less accurate because the interquartile range (1st quartile

- 3rd quartile) increases.

5. Direct approach

The second modelling technique investigated in this paper involves use of

what is termed the direct approach. Instead of training a model many times

and using it recursively to calculate forecasts, the direct approach obtains

a separate model for a horizon h of interest. In such a case, equation (1)

becomes

y (k) = f
(
y (k − h) , y (k − h− 1) , . . . , y (k − h− ny) , u (k − 1) , u (k − 2) , . . . , u (k − nu)

)
+e (k)

The main advantage of the direct approach is that it only requires the

computation of h-step-ahead predictions. This means that the output at

the present time k, y (k), is predicted using the past values y (k − h) ,
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y (k − h− 1) , . . . ,y (k − h− ny) ,u (k − 1) ,u (k − 2) , . . . ,u (k − nu), where

it is assumed that these are known [Wei et al., 2007].

In similarity to the sliding window approach, ny = 4 and nu = 2 were

chosen, and the training process uses the adaptive orthogonal search algo-

rithm described in Billings and Wei [2008]. Accordingly, the NARX model

structure is given by

K̂p (k) =f
(
Kp (k − h) , . . . , Kp (k − h− 3) ,

V (k − 1) , V (k − 2) , Bs (k − 1) , Bs (k − 2) ,

V Bs (k − 1) , V Bs (k − 2) , p (k − 1) , p (k − 2) ,√
p (k − 1),

√
p (k − 2)

)
(11)

where f (·) is chosen to be a polynomial of nonlinear degree ` = 2, Kp (k)

is the measured Kp index at time k, and K̂p (k) is the predicted Kp index

at time k. In this analysis, the first six months of year 2000 are used for

training while the second half of the year is used for validation.

The models identified by the NARX methodology for each horizon are

listed below:

• 3-hours ahead
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K̂p (k) =0.325543Kp (k − 3)− 0.000043V (k− 1)
√
p (k− 1) + 0.673034Bs (k− 1)

− 0.164093Bs (k− 1)
√

p (k− 1)− 0.000003V (k − 1)2 + 0.000217V (k − 1) ·Bs(k − 2)

− 0.006701Bs(k − 1) ·Bs(k − 2)− 0.005810Bs(k − 1) · p(k − 2)− 2.179360

+ 0.753122
√
p (k − 1) + 0.006105V (k − 1)− 0.387292V Bs(k − 1)

+ 0.136271V Bs(k − 1)
√
p (k − 1) (12)

• 6-hours ahead

K̂p (k) =− 0.000191V (k− 1)
√
p (k− 1) + 0.852464Bs (k− 1) + 0.158716Kp (k − 6)

− 0.172607Bs (k− 1)
√

p (k− 1) + 0.000340V (k − 1) ·Bs(k − 2)− 0.000003V (k − 1)2

− 0.058229Bs(k − 1) ·Bs(k − 2)− 0.007989Bs(k − 1) · p(k − 2)

+ 0.009495
√
p (k − 1)

√
p (k − 2) + 0.000962p (k − 1) · p (k − 2)− 2.749889

+ 0.007744V (k − 1) + 0.958020
√
p (k − 1)− 0.514336V Bs (k − 1)

+ 0.113874V Bs(k − 1)
√
p (k − 1) + 0.011219V Bs(k − 1)2 + 0.009277V Bs(k − 2)2

+ 0.032255Bs (k − 2) · V Bs (k − 1) (13)

• 12-hours ahead
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K̂p (k) =0.001618V (k− 1)
√

p (k− 1) + 0.748665Bs (k− 1)− 0.268901Bs (k− 1)
√

p (k− 1)

− 0.000229Kp (k − 12) · V (k − 1) + 0.203764Bs(k − 2)− 0.017656Kp (k − 12) · p(k − 1)

− 0.007676Bs(k − 1) ·Bs(k − 2)− 1.606480− 0.000324V (k − 1) · p (k − 1)

− 0.003098p (k − 1)
√
p (k − 1) + 0.000312V (k − 1) ·Bs(k − 1) + 0.265301Kp(k − 12)

+ 0.003683V (k − 1) + 0.286045p (k − 1)− 0.012219Kp (k − 12) · V Bs(k − 2)

− 0.531734V Bs(k − 1) + 0.195865V Bs(k − 1)
√
p (k − 1) (14)

• 24-hours ahead

K̂p (k) =0.000066V (k− 1)
√

p (k− 1) + 0.838922Bs (k− 1)− 0.213375Bs (k− 1)
√

p (k− 1)

+ 0.011558Kp (k − 24) ·Bs(k − 2)− 0.000004V (k − 1)2 + 0.269300Bs (k − 2)

− 0.066312Bs(k − 1) ·Bs(k − 2)− 3.080364 + 1.023429
√
p (k − 1)

+ 0.008776V (k − 1) + 0.014446Bs(k − 1)2 − 0.573961V Bs(k − 1)

+ 0.120880V Bs(k − 1)
√
p (k − 1) + 0.007968Kp(k − 25)2 + 0.012127Bs(k − 2)2

+ 0.034862V Bs(k − 1) · V Bs(k − 2)− 0.121102V Bs(k − 2)

+ 0.000240V (k − 2) · V Bs (k − 1) (15)

The results of this approach are shown in Fig. 5. They display a similar

pattern to the sliding window approach, i.e. there is a bias for low and high

magnetic disturbances, and the error bars for high values of Kp (Kp ≥ 8)
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become less meaningful. Once again, these characteristics are due to the

uncommon number of cases of high values of the Kp index compared with

the most common Kp values related with quiet activity periods of the

magnetosphere.

To quantify our results, the root mean squared error (RMSE), correlation

coefficient (ρ) and prediction efficiency (PE) are computed. These metrics

are shown in Table 4.

The error for each of the four horizons of interest is respectively shown in

Fig. 6. Once again, there is a notoriously high error at the middle of July,

corresponding to a period of high geomagnetic activity, as mentioned above.

A glimpse of this period is shown in Fig. 7. In addition, Table 5 shows a

statistical summary of the error time series in Fig. 6. In general, it can be

concluded that on average, this approach tends to slightly underpredict the

Kp index given that the means are positive. Furthermore, as the number

of hours to predict ahead increases, the forecasts are less accurate because

the interquartile range (1st quartile - 3rd quartile) increases, as expected.

6. Model Comparison

A quick view to Tables 3 and 5 shows that the direct approach provides

better forecasts than the sliding window approach because the means and

medians are closer to zero, and the interquartile ranges are smaller. To

better visualise this difference, a randomly selected 30-day interval on the
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second half of year 2000 is taken. The features dynamics are shown in Fig.

8.

The model forecasts using both approaches during this 30-day interval

are shown in Figs. 9-10.

To quantify our results, the root mean squared error (RMSE), correlation

coefficient (ρ) and prediction efficiency (PE) are computed. These metrics

are shown in Table 6.

These results show that better forecast accuracy is obtained by the direct

approach. This is an expected result given that the sliding window approach

uses model predicted outputs from a single model, and long-term forecasts

tend to deviate from true values as time goes on. On the other hand, the

direct approach uses a separate model for each horizon and relies on single

calculations for h-step-ahead predictions. However, both approaches show

that predictions for low and high disturbances are slightly biased from the

true values. This observation is coincident with previous findings reported

in Detman and Joselyn [1999] and Boberg et al. [2000], where a model will

perform well for the most common training values, while predictions for

others will be poor. Another explanation is that this comes as a trade-off

for using a regression model to predict a categorical output variable.

Comparing the results obtained with those presented inWing et al. [2005],

the values of the two model performance metrics (i.e. prediction perfor-
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mance and correlation coefficient) calculated from our results are slightly

lower. This may be explained from several factors: i) all the data for all

input and output variables used for model estimation in this study are raw

data sampled hourly where no pre-processing (e.g. smoothing, interpreta-

tion, etc.) was performed; ii) the model input variables used in this work

are not exactly the same as those used in previous studies; iii) some coeffi-

cients required by the models, for example the maximum lags of the input

and output variables, may need to be optimised further. Note that one

of the objectives of this work is to generate compact transparent models

to show how Kp index depends on solar wind parameters and geomagnetic

field indices, and then use such models to do further analysis including fore-

cast. As shown in models 12-15, an important contribution obtained from

the direct approach is that there are three significant model terms that are

shared by all the models. These are shown in bold in the equations above.

The values of the three terms, together with the Kp index, are normalised,

and the associated scatter plots are shown in Fig. 11 (note that the normal-

isation of the values is just to facilitate the visualisation and comparison

of the scatter plots). The importance of the first selected common model

term V (k − 1)
√
p (k − 1) may be roughly explained by its relevance with

Kp when measuring the correlation coefficient (ρ = 0.6149). Model terms
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ranked later would normally not be so important as the top ones, and their

correlation with the Kp signal becomes very weak.

The importance of the model terms selected in the equations above is

not always measured by the values or amplitude of these model terms. A

model term with a high (or low) value does not necessarily mean a high

(or low) value in Kp index, as its change is an outcome of combined and

weighted interactions of many lagged input variables. Experience shows

that top model terms can reflect the major varying trend of the output

signals, while model terms ranked later can be useful in revealing local and

relatively minor changes. While the role of solar wind speed and dynamic

pressure as drivers of the Kp index has been confirmed by previous studies,

this work provides some further information with an explicit format of these

input variables, showing what kind of interactions of these drivers make a

contribution to the change of the Kp index. This is important for further

understanding and analysis of the dependent relationship of the Kp index

on solar wind speed and dynamic pressure, etc.

7. Conclusion

In this paper, we have applied the NARX modelling methodology to the

forecasting of the Kp index. We have obtained a number of models us-

ing two different implementation approaches: namely, recursive prediction

approach based on sliding windows and a direct approach which can di-
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rectly generate h-hour ahead predictions (h = 3, 6, 12 and 24 in our case

studies). In general, good forecasts were obtained for both short and long-

term prediction using the estimated NARX models, but the direct approach

outperforms the recursive approach. Nevertheless, both approaches tend to

show that predictions for low and high disturbances are slightly biased from

the true values. As previously reported, such a bias is a result of the uneven

distribution in the output signal, and in this paper, the use of a regression

model to predict a categorical output variable may also play a role on this

matter. An interesting property obtained from the direct approach is a set

of significant model terms that are shared by all the models, regardless of

the time horizon of interest. While the role of the solar wind speed and

dynamic pressure as drivers of the Kp index has been confirmed by previ-

ous studies, the present work produced some further information showing

the relative contributions made by these drivers to the changes in the Kp

index. This is useful for further understanding the relationship of the Kp

index to solar wind. It was noticed that the values of prediction perfor-

mance and correlation coefficient relating to our models are slightly lower

than those reported by Wing et al. [2005] and possible reasons were briefly

discussed. To improve the overall performance of the proposed models, the

following investigations will be considered: i) in dynamic regression mod-

eling, the choice of maximum lags for both input and output variables is

c©2016 American Geophysical Union. All Rights Reserved.



important, therefore it is highly desirable to introduce an adaptive maxi-

mum lag selection scheme to accommodate the non-stationary features of

both the input and output sequences; ii) the raw Kp data are categorical,

the recently developed logistic-NARX model may be more appropriate to

deal with the Kp prediction problem where the output signal is categorical

while the input variables are time-continuous.
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Table 1. Dataset variables.
Variable Symbol Description

Input

V Solar wind speed [km/s]
Bs Southward interplanetary magnetic field [nT]
V Bs Southward interplanetary magnetic field [V Bs = V ·Bs/1000]
p Solar wind pressure [nPa]√
p Square root of solar wind pressure

Output Kp Kp index (variable of interest)
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Table 2. Evaluation metrics for each of the four horizons of interest obtained

with the sliding window approach.
Horizon RMSE ρ PE

3 0.7935 0.8590 0.7359
6 0.9014 0.8159 0.6598
12 0.9513 0.7991 0.6225
24 0.9624 0.7972 0.6149
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Table 3. Statistical summary for the error time series shown in Fig. 3.

Statistic Forecast
3 6 12 24

Minimum -3.1980 -2.7180 -2.5570 -2.4860
1st Quartile -0.5394 -0.6409 -0.7106 -0.7270
Median -0.0843 -0.1032 -0.1391 -0.1497
Mean -0.0303 -0.0491 -0.0711 -0.0830

3rd Quartile 0.4084 0.4440 0.4454 0.4447
Maximum 4.7170 5.7520 6.3050 6.3900
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Table 4. Evaluation metrics for each of the four horizons of interest obtained

with the direct approach.
Horizon RMSE ρ PE

3 0.7593 0.8711 0.7585
6 0.8328 0.8424 0.7096
12 0.8623 0.8305 0.6895
24 0.8719 0.8265 0.6824
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Table 5. Statistical summary for the error time series shown in Fig. 6.

Statistic Forecast
3 6 12 24

Minimum -2.3890 -2.6040 -2.8780 -3.5550
1st Quartile -0.4436 -0.4842 -0.4910 -0.5073
Median -0.0138 -0.0096 0.0068 -0.0107
Mean 0.0373 0.0433 0.0575 0.0446

3rd Quartile 0.4625 0.4950 0.5210 0.5005
Maximum 4.6880 5.6140 5.9440 5.7260
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Table 6. Evaluation metrics for each of the four horizons of interest using the

sliding window and direct approaches during a 30-day interval between September

and October of year 2000.
Horizon Approach RMSE ρ PE

3 Window 0.8308 0.8874 0.7828
Direct 0.7582 0.9156 0.8287

6 Window 0.9298 0.8628 0.7283
Direct 0.8053 0.9071 0.8105

12 Window 0.9546 0.8728 0.7138
Direct 0.8537 0.9054 0.7919

24 Window 0.9569 0.8804 0.7125
Direct 0.8588 0.8875 0.7831
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Figure 2. Comparison between the measuredKp index and predictions made for

(a) 3, (b) 6, (c) 12, and (d) 24 hours ahead using the sliding window approach. The

black line represents the ideal case when the prediction is equal to the measuredKp

index. The points and bars correspond to the means and one standard deviations

of the predictions made for each of the 28 Kp values.
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Figure 3. Error time series for the four horizons of interest obtained with the

sliding window approach.
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middle of July 2000 using the sliding window approach. The black line corresponds

to the measured Kp values.
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Figure 5. Comparison between the measuredKp index and predictions made for

(a) 3, (b) 6, (c) 12, and (d) 24 hours ahead using the direct approach. The black

line represents the ideal case when the prediction is equal to the measured Kp

index. The points and bars correspond to the means and one standard deviations

of the predictions made for each of the 28 Kp values.
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Figure 6. Error time series for the four horizons of interest obtained with the

direct approach.
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Figure 8. Feature dynamics for a randomly selected 30-day period on the second

half of year 2000. The variable sqrtp corresponds to
√
p (t).
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Figure 9. Comparison between the sliding window and direct approaches for 3-
hour ahead predictions of the Kp index during a 30-day interval between September and
October of year 2000. The black line corresponds to the measured Kp values.
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Figure 10. Comparison between the sliding window and direct approaches for 24-
hour ahead predictions of the Kp index during a 30-day interval between September and
October of year 2000. The black line corresponds to the measured Kp values.
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Figure 11. Top three significant model terms shared by all models in the direct

approach. The correlation coefficients are (a) 0.6149, (b) 0.5571 and (c) 0.5437.
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