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a b s t r a c t 

A substantial amount of datasets stored for various applications are often high dimensional with redun- 

dant and irrelevant features. Processing and analysing data under such circumstances is time consuming 

and makes it difficult to obtain efficient predictive models. There is a strong need to carry out analyses 

for high dimensional data in some lower dimensions, and one approach to achieve this is through feature 

selection. This paper presents a new relevancy-redundancy approach, called the maximum relevance–

minimum multicollinearity (MRmMC) method, for feature selection and ranking, which can overcome 

some shortcomings of existing criteria. In the proposed method, relevant features are measured by corre- 

lation characteristics based on conditional variance while redundancy elimination is achieved according 

to multiple correlation assessment using an orthogonal projection scheme. A series of experiments were 

conducted on eight datasets from the UCI Machine Learning Repository and results show that the pro- 

posed method performed reasonably well for feature subset selection. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Technological advancement in data storage has led to the ex-

losive growth in size of massive datasets which are usually of

igh dimensional with redundant and irrelevant features. Mod-

lling high dimensional data is often computationally expensive

nd good predictive models are difficult to obtain because datasets

ay contain a large number redundant and irrelevant features.

hus, dimensionality reduction is seen as a crucial pre-processing

tep to overcome these problems which can be done by feature

election or feature extraction. In both approaches, the aim is to

ownscale a high dimensional data or feature space to a man-

geable low dimensional representation while retaining the data

tructure or useful information as much as possible. 

In feature extraction approaches such as principal component

nalysis [1] and linear discriminant analysis [2] , new features are

onstructed from the original features to form a new reduced di-

ensional space by combining or transforming the original fea-

ures using some functional mapping. Although the new features in

he new reduced dimensional space are related to the original fea-

ures, the actual interpretation of the original features and hence

he relation to the original system variables is completely lost in
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ost cases. This drawback should be taken into account when con-

idering dimensionality reduction since the actual interpretation

ay be important to understand the learning process that gener-

tes the new feature space [3] . Feature extraction also often asso-

iated with computational inefficiency despite the fact that it may

ignificantly reduce dimensional space since the new constructed

eatures are based on transformation that involves all original fea-

ures including irrelevant and redundant features. 

Unlike feature extraction which attempts to create new fea-

ures based on all original features, feature selection is an approach

hich requires a selection of the most significant subset of fea-

ures to a targeted concept by removing redundant and irrelevant

eatures [4] . These redundant and irrelevant features can be ig-

ored because they give very little or no unique information for

ata analysis and modelling. 

Existing feature selection methods can be broadly categorized

nto three models: filter, wrapper and hybrid. Feature subset se-

ection with a filter model is independent of specific mining al-

orithms as the search is based on the subset relevance to the

argeted evaluation criterion. Hence, the filter model is not af-

ected by any bias caused by the mining algorithm. The indepen-

ent property also implies feature selection has to be carried out

ust once since the result can be used for different mining algo-

ithms. In addition, the filter model is also considered as having

imple search structure and is thus relatively easy to understand

n comparison with other models. 

http://dx.doi.org/10.1016/j.patcog.2017.01.026
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In contrast to the filter model which selects feature subset rel-

evant to the targeted evaluation criterion, the wrapper model se-

lects a feature subset which is relevant to a predetermined mining

algorithm. The mining algorithm is used as a black box to evaluate

the quality of each candidate feature subset in order to find the

best feature subset. This means that the wrapper model performs

feature selection based on the mining performance level in which

a feature subset is selected when the mining algorithm shows an

optimal performance while taking into account feature dependen-

cies in the feature selection procedure. As a result, the feature sub-

set selected using the wrapper model will give higher mining per-

formance than the filter model since the wrapper model is de-

signed to search feature subset that is particularly tailored to the

employed mining algorithm. For the same reason, however, render-

ing the feature subset obtained by the mining algorithm is unlikely

to be suitable for use with other mining algorithms. Besides, the

wrapper model is computationally slower when compared to the

filter model since the mining algorithm of the wrapper model has

to perform its task repeatedly until the final feature subset that

gives maximum mining performance is found. This explains why

the filter model is preferable than the wrapper model in handling

large feature space problems. 

The hybrid model emerged with an aim to combine the ad-

vantages possessed by both the filter and wrapper models. The

model applies both an independent measure and a mining algo-

rithm to measure the quality of each feature subset in the search

space. Since mining performance is used as a guideline to stop

the search, feature selection results based on the hybrid model is

therefore specific to the mining algorithm employed. Consequently,

the selected feature subset may not fit well with other mining al-

gorithms and hence the hybrid model suffers the same problem as

in the wrapper model. 

Suppose that there are M original features in a dataset. An ex-

haustive search for an optimal feature subset when there exists

2 M candidate subsets is impractical for large M and even with a

moderate M since it is too time consuming. Nevertheless, a search

does not necessarily need to be exhaustive in order for it to be

optimal as demonstrated in branch and bound method and best

first search approaches. However, all optimal methods can be ex-

pected to be considerably slow for high dimensional problems [3] .

Thus, it is often preferable for many high dimensional problems

to employ heuristic methods that compromise subset optimality

for better computational efficiency. A few examples of such search

strategies are sequential search [5,6] , floating search [7–9] , random

mutation hill climbing [10] and evolutionary-based approaches

[11–14] . 

Much of the early work on feature selection focuses on choos-

ing relevant features. Traditionally, feature redundancy was defined

in some explicit or inexplicit manner, highlighting the need to re-

move redundant features [7,15–18] . Recently, a more concrete def-

inition of feature redundancy was given in [19] with an illustra-

tion of the conceptual relationship between feature relevancy and

redundancy. For example, in [17] the Markov Blanket filtering pro-

cess was utilized to form the definition and an explicit redundancy

analysis was also presented. 

The concepts of feature relevancy and feature redundancy are

translated and expressed by means of certain feature relationships

in feature selection methods. The relevance of a feature is mea-

sured by evaluating its relationship with the target class label,

while the redundancy of a feature is measured by its relationship

with other features in the currently selected feature subset. 

2. Related work 

Many feature selection methods in the literature use mutual in-

formation to measure feature relevancy and redundancy. In [20] ,
eatures are ranked according to their mutual information with re-

pect to the class label and also with respect to the previously

elected features. The mutual information based feature selection

MIFS) method proposed by Battiti [20] follows hill climbing se-

ection scheme and chooses the next best feature that maximizes

( f i ) = I(c , f i ) − β
∑ 

f j ∈ S 
I( f j , f i ) (1)

here I ( c, f i ) denotes mutual information between class label c

nd candidate feature vector f i while I ( f j , f i ) denotes mutual in-

ormation between previously selected feature f j which have been

ccumulated in subset S and candidate feature f i . The parameter β
s a user predefined value that will control the importance of re-

undant features. The larger the value, the more the measurement

riterion will remove redundant features. 

A variant of the MIFS method called the MIFS-U [21] emerged

ater to overcome the MIFS limitation which does not reflect re-

ationships between feature and class label properly in its redun-

ancy term if β is set too large. The MIFS-U approach brought a

light change to the right-hand side term so that the MIFS crite-

ion becomes 

( f i ) = I(c , f i ) − β
∑ 

f j ∈ S 

I(c, f j ) 

H( f j ) 
I( f j , f i ) (2)

here H ( f j ) is the entropy of f j . However, the MIFS-U approach is

imited for uniformly distributed information. 

As the number of features to be selected increases, the right-

and side term becomes incomparable with the left-hand side

erm for both MIFS and MIFS-U methods due to magnitude expan-

ion of the right-hand side term [22] . Because of this problem, the

ethods may be forced to select and prioritize irrelevant features

ather than relevant and/or redundant features. Another problem

ith both methods is that their optimal solution depends on the

alue assigned to β with optimal β ’s being considered subject to

ata structure. Hence no specific guided rule was given on how to

hoose parameter β . Apparently, a user may need to try different

alues before an optimal or acceptable suboptimal solution can be

btained. 

The issue of incomparable terms in MIFS and MIFS-U meth-

ds mentioned earlier was overcome in the minimal-redundancy-

aximum relevance (mRMR) feature selection criterion [23] by

ubstituting β with reciprocal of the subset S cardinality, 1/| S |. This

ill prevent the cumulative sum of the second term from having

n excessive value in the expansion at any number of feature sub-

ets to be considered which then lead to two equivalent terms for

omparison. The mRMR criterion maximizes 

( f i ) = I (c , f i ) −
1 

| S | 
∑ 

f j ∈ S 
I ( f j , f i ) . (3)

Mutual information is preferable as an evaluation criterion over

he correlation function for many proposed feature selection meth-

ds because of its ability to measure arbitrary dependence rela-

ionships between two features [20,24] . The method is not only

imited to numerical features, but also applies to symbolic features

onsisting of discrete categories [24] . These two advantages made

he mutual information based criterion to be seen as a more uni-

ersal and robust measure. 

Despite the aforementioned advantages, the mutual information

riterion also has a few notable drawbacks. Mutual information

omputation is straightforward for discrete (categorical) random

ariables where an exact solution can be obtained easily. How-

ver, for continuous random variables which are frequently en-

ountered in mutual information computations, it is difficult to

ain the exact solution since the computation of the exact prob-

bility density functions (pdfs) is impossible [21] . Hence, an esti-
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ation of the mutual information is required and different meth-

ds can be employed. Among the possible methods are histogram-

ased [25] , kernel density estimation [26] , k-nearest neighbour

27] , Parzen window [28] , B-spline [29] , adaptive partitioning

30,31] and fuzzy-based [32] approaches. These estimation meth- 

ds typically involve some pre-set parameters whose optimal val-

es heavily depend on problem characteristics. Parameter settings

ould possibly be the major source of large estimation errors but

till the parameters are often assigned with arbitrary values be-

ause there is no clear-cut rule provided [33] . In addition, there are

o many available options for the mutual estimation calculations.

herefore, the efficiency of a feature selection approach greatly re-

ies on the method applied. 

In [34] , another form of relevancy-redundancy measurement

riterion similar to the three criteria discussed above (i.e., MIFS,

IFS-U and mRMR) was introduced particularly for continuous

ariables. This criterion, referred to as the F -test correlation differ-

nce (FCD), does not involve the calculation of mutual information.

t selects the next best feature that maximizes 

( f i ) = F (c , f i ) −
1 

| S | 
∑ 

f j ∈ S 

∣∣ r( f j , f i ) 
∣∣ (4)

here F ( c, f i ) is the F -test statistic (or t -test statistic if two-class

lassification task is considered) comparing feature f i and the class

abel c whereas r ( f j , f i ) can be chosen to be Pearson correlation

oefficient, Euclidean distance or any other appropriate measure.

ne problem with the FCD criterion is that the first term ( F -test

tatistic) is not comparable with the second cluster of terms (re-

undancy terms) as they have different range of magnitude. The

 -test statistic can take any positive value, while the value of re-

undancy coefficient ranging from zero to one. As a consequence,

he F -test value may dominate the optimization criterion and re-

uce the impact of the second cluster of terms. 

This paper presents a new alternative relevancy-redundancy

riterion for feature selection, which is designed to take advantage

f the idea of both the mRMR and FCD criteria, and meanwhile

void the drawback of the two methods inherited from the origi-

al MIFS algorithm introduced in [20] . It is known that MIFS has

 drawback in that its performance replies on the choice of the

arameter beta for controlling and penalising the redundancy; the

ptimal choice of the parameter beta, however, strongly depends

n the problem to be solved [22] . The proposed criterion is dif-

erent from the two criteria in that it does not require any pre-

pecification or determination of thresholds for parameter settings.

n the proposed method, relevant features are measured using con-

itional variance [35] while redundancy elimination is achieved

hrough multiple correlation assessment using an orthogonal pro-

ection scheme [36] . The combination of these methods was mo-

ivated by the requirement to form a robust criterion that allow

 comparable evaluation of feature relevancy and redundancy, yet

voiding mutual information based approach. Unlike mutual infor-

ation based feature selection, the proposed method has the ad-

antage of not demanding any control parameters, thus preventing

ny uncertainty associated with the method and providing consis-

ency in the results. 

The remaining contents of the paper are organized as follows.

ection 3 is mainly reserved for a comprehensive discussion on

ow feature relevancy can be assessed by means of conditional

orrelation. Section 4 presents the idea of feature redundancy as-

essment by utilizing the concept of multicollinearity. The descrip-

ion also includes the interrelation of multicollinearity and squared

ultiple correlation coefficient, as well as how the coefficient can

e used to quantify feature redundancy. A new feature selection

riterion that tries to optimize both feature relevancy and feature

edundancy is then introduced in Section 5 . Section 6 gives details

f the experimental setup and the procedure used in order to show
he efficiency of the proposed method. The empirical results and

xtensive discussion are given in Section 7 , followed by conclusion

or the paper in Section 8 . 

. Feature relevancy assessment 

While many powerful feature selection methods were proposed

n the literature to tackle various issues, relatively less and lim-

ted work has been done to assess the correlation between discrete

nominal) and continuous (quantitative) features directly. The ma-

ority of the prominent correlation measures were specifically de-

igned for use either between two features of the same data type

r between continuous and ordinal features. 

The point-biserial correlation coefficient [37] is the most pop-

lar measure suggested when one feature is discrete while the

ther one is continuous. Yet the measure can only be used when

he discrete feature is dichotomous or possibly be made dichoto-

ous which is not always the case for many applications. An effort

as made in [35] to fill this gap where a correlation measure be-

ween discrete and continuous features based on the underlying

roperties of marginal and conditional expectation and variance

as introduced. The measure was adopted as part of the evalu-

tion criterion for the feature selection approach that is specific

o address some problem in mineral resources domain. In [38] , an

fficient correlation measure based filter (ECMBF) algorithm was

roposed for the assessment of both feature relevancy and fea-

ure redundancy for more general applications. The ECMBF algo-

ithm requires two predefined parameters, to distinguish weak ir-

elevance/relevance and redundancy, respectively. The choice of the

wo parameters can significantly affect the quality of the selected

eature subset. This is probably the main disadvantage of the al-

orithm. Another drawback of ECBMF is that the assessment of

he redundancy of each candidate feature is independent of the

urrent selected features. In this study, an alternative approach is

esired to overcome these drawbacks. The proposed correlation

ased method uses two measures that simultaneously evaluate

eatures’ dependency and redundancy, based on which ‘best’ fea-

ures are selected using a sequential forward algorithm. The pro-

osed method in this study is different from other types of filter

pproaches for example the Fisher score based methods [39] . 

In this paper, the potential of the correlation measure proposed

n [35] is exploited; it will particularly be used to assess feature

elevance. Towards better understanding the reliability of this cor-

elation measure, its theoretical properties and conditions will be

iscussed first in detail. 

Let X represent a quantitative random variable and Y represent

 nominal random variable with some possible outcomes y i . If ev-

ry outcome y i is described by a certain probability P (Y = y i ) then

he marginal expectation (also known as the expected value of X )

ymbolized by E ( X ), is given by 

(X ) = 

∑ 

y i 

P (Y = y i ) E(X | Y = y i ) (5) 

here E(X| Y = y i ) denotes the conditional expectation of X given

 = y i . It can be shown from this definition that the expected value

f the conditional expectations, denoted by E [ E ( X | Y )], is E ( X ), that

s 

(X ) = E [ E(X | Y )] . (6)

Marginal variance of the random variable X is defined as 

ar (X ) = E ( [ X − E (X )] 2 ) = E( X 

2 ) − [ E(X )] 2 . (7)

Analogous to Eq. (7) , the conditional variance of X given Y = y i 
s 

ar (X | Y ) = E( X 

2 | Y ) − [ E(X | Y )] 2 ) . (8)
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Note that Var( X | Y ) can be considered as a random variable,

thereby theoretically permits the computation of its expected value

E [Var (X | Y )] = E { E ( X 

2 | Y ) − [ E(X | Y )] 2 } . (9)

Based on the additive law of expectation, the Eq. (9) can be

rewritten as 

E [Var (X | Y )] = E [ E ( X 

2 | Y )] − E ( [ E (X | Y )] 2 ) . (10)

Applying the relationship given by Eq. (6) to the first term at

the right-hand side of Eq. (10) yields 

E [Var (X | Y )] = E( X 

2 ) − E ( [ E (X | Y )] 2 ) . (11)

Next, it is of interest to consider the variance of the condi-

tional expectation, marked byVar[ E ( X | Y )]. Using the marginal vari-

ance definition given in ( 7 ), Var[ E ( X | Y )] can be expressed as 

Var [ E(X | Y )] = E( [ E( X | Y )] 2 ) − [ E(E(X | Y ))] 2 . (12)

Applying ( 6 ) in Eq. (12) implies 

Var [ E(X | Y )] = E( [ E( X | Y )] 2 ) − [ E(X )] 2 . (13)

Then adding Eq. (11) to Eq. (13) gives 

E [Var (X | Y )] + Var[E (X | Y )] = E( X 

2 ) − [ E(X )] 2 . (14)

Notice that the right-hand side of Eq. (14) is equal to Var( X ) as

stated in ( 7 ). Hence, the following relationship is obtained 

Var (X ) = E [Var (X | Y )] + Var [ E(X | Y )] (15)

which is well known as the law of total variance. A special case of

the law is Var (X ) = E [Var (X| Y )] ⇔ Var [ E(X| Y )] = 0 . This bicondi-

tional implication is true when every conditional expectation given

 = y i is equal to the marginal expected value. Since variances can

never be negative, it is apparent that Var( X ) ≥ E [Var( X | Y )] and

Var( X ) ≥ Var[ E ( X | Y )]. 

From Eq. (15) it can be observed that the overall variability of

a random variable X consists of two components. One component

is the expected value of the conditional variance, E [Var( X | Y )], that

quantifies the average variability within outcomes. Another compo-

nent is the variance of the conditional means,Var[ E ( X | Y )], that in-

dicates how much the variability is between outcomes. The former

is considered in the correlation measure which will be presented

next. 

The correlation coefficient that measure the relationship be-

tween a quantitative random variable X and a nominal random

variable Y is defined by 

r qn (X, Y ) = 

(
1 − E [Var (X | Y )] 

Var (X ) 

)1 / 2 

(16)

which actually exploits the law of total variance. Based on pre-

vious discussions about Var( X ) and Var[ E ( X | Y )], it can be verified

that 0 ≤ r qn ( X, Y ) ≤ 1. A value of r qn ( X, Y ) approaching ‘1’ indicates

that there is a strong correlation or dependency between X and

Y . Meanwhile, the value of r qn ( X, Y ) approaching ‘0’ suggests that

there is a weak relationship between X and Y . If X and Y are to-

tally independent or uncorrelated, then r qn (X, Y ) = 0 , which is the

special case of the law of total variance mentioned before. On con-

trary, the presence of perfect dependency or correlation between X

and Y is indicate by r qn (X, Y ) = 1 . 

The above correlation coefficient will be used to measure fea-

ture relevance. It will be integrated with multiple correlation as-

sessment in order to define a new feature selection criterion that

can measure both feature relevancy and feature redundancy si-

multaneously. The multiple correlation assessment can be used to

identify features with multicollinearity and thus can be used to de-

tect and remove redundant features. 
. Multicollinearity redundancy and the squared multiple 

orrelation coefficient 

.1. Multicollinearity redundancy 

Assume that there are a total of M original features in a dataset.

eature selection refers to a process of searching an optimal or

uboptimal subset of m features from the M features [40] . The re-

ulting feature subset from the process should essentially lead to

 performance improvement or at least with minimal performance

egradation as much as possible for the task under consideration.

his objective can be realized by selecting representative features

hat hold important information characterizing all original features.

n particular, it can be done by not only selecting features that

ave high relevancy to the targeted class but also have low redun-

ancy within selected features. 

An ultimate feature redundancy occurs if a feature has exact

inear dependency with the current selected features and thus pro-

ides no extra information. While exact linear dependency is rarely

resent in many real data, a significant type of redundancy is also

aken into account in such a way that features with any potential

ulticollinearity will be removed. Multicollinearity is a term to de-

cribe the presence of strong correlation or high linear dependency

mong two or more independent variables. This means that a fea-

ure with multicollinearity can be linearly estimated by a set of

ther features at some high level of accuracy and therefore sug-

ests such a feature has redundant information. In comparison to

eatures having ultimate redundancy, features with multicollinear-

ty redundancy still provide some unique information but not im-

ortant enough to give notable impact for effective data analysis

asks for example classification. 

Multicollinearity can be identified from high values of the

ultiple correlation coefficient. However, since the actual inter-

st is to assess predictive power of the current selected features

n estimating a considered feature, the squared multiple corre-

ation coefficient is often used instead of the multiple correla-

ion coefficient. The squared multiple correlation coefficient specif-

cally indicates the proportion of the variation in the considered

eature that is predictable from the selected features. The value

anges from 0 to 1 with higher values implying a better pre-

ictive power. When a maximum value of the squared multi-

le correlation coefficient is obtained it indicates a full predictive

ower which is the ultimate redundancy. Thus, the ultimate re-

undancy can be regarded as the best achievable multicollinear-

ty. Note that the squared multiple correlation coefficient can be

omputed by utilizing pairwise orthogonal projection of features

lready selected [4,41] . This will be further discussed in the next

ection. 

.2. The squared multiple correlation coefficient 

Suppose that the set F = { f 1 , f 2 , . . . , f M 

} is a complete dataset

f M features where each f i = [ f (i ) 
1 

, f (i ) 
2 

, . . . , f (i ) 
N 

] T is a featur e v ec-

or composed by N observations. Also suppose that a subset S con-

isting (k − 1) features f i 1 , f i 2 , . . . , f i k −1 
has already been selected

rom the set of M original features. These (k − 1) features are then

ransformed into orthogonal variables q 1 , q 2 , . . . , q k −1 using cer-

ain type of transformation. If the next feature f = f i k is selected

nd included into S later on, then the k th orthogonal variable, q k ,

ssociated to f is calculated by 

 k = f − f T q 1 

q 

T 
1 
q 1 

q 1 − · · · − f T q k −1 

q 

T 
k −1 

q k −1 

q k −1 . (17)
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Table 1 

A summary of the datasets characteristics. 

Dataset Number of Number of Number of 

features instances classes 

Glass [N] 9 214 7 

Magic Gamma [N] 10 19,020 2 

Vowel [N] 10 990 11 

Statlog [N] 18 846 4 

Mfeat Zernike [N] 47 20 0 0 10 

Sonar 60 208 2 

Musk [N] 166 476 2 

Mfeat Factors [N] 216 20 0 0 10 

[N]: The raw dataset was normalized for the proposed method in 

the experiment. This also means the dataset was normalized in 

classification accuracy computation for all classifiers. 
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The squared correlation coefficient between a feature f ∈ F − S

nd an orthogonal variable q ∈ { q 1 , q 2 , . . . , q k } is defined as 

c (f , q ) = 

( f T q ) 
2 

( f T f )( q 

T q ) 
= 

(∑ N 
i =1 f i q i 

)2 

∑ N 
i =1 f 

2 
i 

∑ N 
i =1 q 

2 
i 

. (18)

Based on ( 18 ), the squared multiple correlation coefficient

or each remaining feature f ∈ F − S with the selected features

 i 1 
, f i 2 , . . . , f i k (or equivalently with q 1 , q 2 , . . . , q k ) can be com-

uted as 

 

2 (f ; q 1 , . . . , q k ) = 

k ∑ 

i=1 

sc (f , q i ) (19)

here the square root of R 2 geometrically represents the length

f orthogonal projection of f in the directions of the orthogonal

ariables q 1 , q 2 , . . . , q k divided by the norm (energy) of f . 

. Monitoring criterion 

In order to choose features that are most relevant to the tar-

eted class c , the monitoring condition is to maximize the measure

 : 

 = r 2 qn ( f j , c ) suchthat f j ∈ F − S (20)

hich utilizes the squared value of the correlation coefficient given

n ( 16 ). On the other hand, the squared multiple correlation coef-

cient defined in ( 19 ) is suggested to guide selection of features

hat are least mutually dissimilar or least redundant. Thus, the re-

undancy condition to be considered for measuring redundancy

etween feature f j and the current selected feature subset S is to

inimize the measure W : 

 = R 

2 ( f j ; q 1 , . . . , q k ) = 

k ∑ 

i=1 

sc ( f j , q i ) suchthat f j ∈ F − S (21)

here q 1 , q 2 , . . . , q k are orthogonal variables associated respec-

ively with preceding selected features f i 1 , f i 2 , . . . , f i k contained in

 . 

Because the aim of the feature selection is to select features

hat are highly relevant to the targeted class c and also has low

edundancy with other selected features, both measures V and W

re optimized simultaneously. A new feature to be added will be

ased on one possible single criterion combining both measures.

he monitoring criterion used in this study is to maximize 

( f j ) = r 2 qn ( f j , c ) − R 

2 ( f j ; q 1 , . . . , q k ) such that f j ∈ F − S (22)

hich can also be written as 

( f j ) = max 
f j ∈ F −S 

[ 

r 2 qn ( f j , c ) −
k ∑ 

i=1 

sc ( f j , q i ) 

] 

. (23) 

The correlation coefficient r qn is squared in ( 22 ) so that a fair

omparison can be made with the R 2 term. Clearly, there is no

re-defined parameter required from user in the criterion. The fea-

ure selection method, based on the criterion ( 23 ), is referred to

s the maximum relevance – minimum multicollinearity (MRmMC)

ethod. 

In the MRmMC method, the first feature is selected if it sat-

sfies the optimization criteria stated in ( 20 ) and the rest are se-

ected based on criterion ( 23 ) by using forward sequential search

trategy. At every subsequent step, a new feature will be added to

reviously selected feature subset. This simple piecewise feature

earch strategy will avoid excessive computational burden to the

RmMC feature selection, and can therefore accelerate the feature

earch procedure. Note that although the search may lead to a sub-

ptimal solution, it can meet the requirements for most real appli-

ations. 
The proposed criterion ( 22 ) can overcome the drawback of the

IFS approach, and it can effectively manage relevance and redun-

ancy as follows. The first part, V , measures relevance using a cor-

elation coefficient defined by ( 16 ) and ( 20 ), while the second part,

 , measures the redundancy of a candidate feature with features

n a selected feature set by evaluating the multicollinearity when

he candidate feature is added to the existing feature subset. 

The proposed criterion has the following advantages: i) The two

arts of the criterion are comparable, and can result in a good bal-

nce between relevance and redundancy; ii) There is no need to

re-specify a control parameter as required in MIFS, and iii) the

lgorithm is relatively easier to implement. Some implementation

etails (pseudo-code) of MRmMC is shown in Fig. 1 . 

The time complexity of the MRmMC method is determined by

hree main parts: the assessment of feature relevancy to the class

abel, the computation of the squared correlation coefficient, and

he orthogonalization operations. Feature relevancy assessment has

 linear time complexity of O ( MN ), where M is the number of can-

idate features and N is the number of observations. The compu-

ation of the squared correlation coefficient has a worst-case time

omplexity of O ( M 

2 N ) while the orthogonalisation procedure is of

 complexity of O ((M − 1) N) . As a result, the overall time com-

lexity takes the order of O ( M 

2 N ). 

. Experimental setup and procedure 

A series of experiments were conducted to test and analyse the

fficacy of the proposed MRmMC method from several perspec-

ives. Eight datasets were used as benchmarks, and relevant results

ere compared with those generated from mRMR and MIFS. 

.1. Benchmark datasets 

The eight public real datasets available from the UCI Machine

earning Repository, are depicted in Table 1 . In order to provide

omprehensive evaluation, the datasets were picked based on three

ifferent categories of dimensional size: low-dimension ( M ≤ 10),

edium-dimension (10 < M ≤ 100), and high-dimension ( M >

00). Important details of the chosen datasets are summarized in

able 1 . Observe that the datasets are also varied in terms of num-

er of instances and number of classes. 

.2. Comparison with similar methods 

The MIFS and mRMR methods are specifically employed for a

omparison purpose as they possess similar forms of measurement

riteria and use the same sequential feature search strategy. Fea-

ure subset solutions of the MIFS and mRMR methods were ob-

ained by running the Feature Selection Toolbox (FEAST) (available
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Fig. 1. The MRmMC algorithm. 

Fig. 2. Classification results for Glass dataset over different number of selected features, tested with four classifiers: (a) 5-NN, (b) Naïve Bayes, (c) SVM and (d) CART. Each 

plot shows comparison among MRmMC, mRMR and MIFS methods. 

 

 

 

 

6

 

d  

t  
at: http://www.cs.man.ac.uk/ ∼gbrown/fstoolbox/ ) that was origi-

nally developed by Brown et al. [42] . In this work, the redun-

dancy parameter was chosen to be β = 1 for the MIFS method.

This choice of parameter value was in the appropriate range sug-

gested by Battiti [20] . 
.3. Validation classifiers 

MRmMC is a filter method, and hence its efficiency might be

ifferent from one classifier to another classifier. Thus, four of the

en most influential algorithms in data mining [43] , namely, the

http://www.cs.man.ac.uk/~gbrown/fstoolbox/
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Fig. 3. Classification results for Magic Gamma dataset over different number of selected features, tested with four classifiers: (a) 5-NN, (b) Naïve Bayes, (c) SVM and (d) 

CART. Each plot shows comparison among MRmMC, mRMR and MIFS methods. 

Fig. 4. Classification results for Vowel dataset over different number of selected features, tested with four classifiers: (a) 5-NN, (b) Naïve Bayes, (c) SVM and (d) CART. Each 

plot shows comparison among MRmMC, mRMR and MIFS methods. 
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Fig. 5. Classification results for Statlog dataset over different number of selected features, tested with four classifiers: (a) 5-NN, (b) Naïve Bayes, (c) SVM and (d) CART. Each 

plot shows comparison among MRmMC, mRMR and MIFS methods. 

Fig. 6. Classification results for Mfeat Zernike dataset over different number of selected features, tested with four classifiers: (a) 5-NN, (b) Naïve Bayes, (c) SVM and (d) 

CART. Each plot shows comparison among MRmMC, mRMR and MIFS methods. 
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Fig. 7. Classification results for Sonar dataset over different number of selected features, tested with four classifiers: (a) 5-NN, (b) Naïve Bayes, (c) SVM and (d) CART. Each 

plot shows comparison among MRmMC, mRMR and MIFS methods. 

Fig. 8. Classification results for Musk dataset over different number of selected features, tested with four classifiers: (a) 5-NN, (b) Naïve Bayes, (c) SVM and (d) CART. Each 

plot shows comparison among MRmMC, mRMR and MIFS methods. 
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Fig. 9. Classification results for Mfeat Factors dataset over different number of selected features, tested with four classifiers: (a) 5-NN, (b) Naïve Bayes, (c) SVM and (d) CART. 

Each plot shows comparison among MRmMC, mRMR and MIFS methods. 

Table 2 

A comparison of the average classification accuracy based on the first m selected features. 

Glass Magic Gamma 

MRmMC mRMR MIFS MRmMC mRMR MIFS 

5-NN Accuracy Accuracy p -value Accuracy p -value Accuracy Accuracy p -value Accuracy p -value 

m = 5 62 .38 62 .42 0 .51 58 .65 0 .01 ✱ 80 .38 77 .61 0 .00 ✱ 77 .22 0 .00 ✱ 

m = 10 64 .28 64 .68 0 .60 62 .25 0 .10 81 .21 79 .91 0 .00 ✱ 79 .91 0 .00 ✱ 

N Bayes Accuracy Accuracy p -value Accuracy p -value Accuracy Accuracy p -value Accuracy p -value 

m = 5 53 .87 48 .73 0 .00 ✱ 45 .20 0 .00 ✱ 76 .96 77 .22 0 .96 � 77 .09 0 .79 

m = 10 54 .53 54 .40 0 .47 51 .55 0 .05 76 .55 76 .85 0 .98 � 76 .91 0 .99 �

SVM Accuracy Accuracy p -value Accuracy p -value Accuracy Accuracy p -value Accuracy p -value 

m = 5 59 .13 60 .79 0 .87 54 .22 0 .00 ✱ 78 .71 74 .55 0 .00 ✱ 74 .82 0 .00 ✱ 

m = 10 61 .72 62 .28 0 .64 57 .04 0 .00 ✱ 78 .93 76 .63 0 .00 ✱ 76 .60 0 .00 ✱ 

CART Accuracy Accuracy p -value Accuracy p -value Accuracy Accuracy p -value Accuracy p -value 

m = 5 60 .36 59 .92 0 .40 56 .35 0 .01 ✱ 76 .70 73 .64 0 .00 ✱ 73 .34 0 .00 ✱ 

m = 10 63 .06 62 .5 0 .38 62 .17 0 .30 78 .50 77 .08 0 .00 ✱ 77 .02 0 .00 ✱ 

Vowel Statlog 

MRmMC mRMR MIFS MRmMC mRMR MIFS 

5-NN Accuracy Accuracy p -value Accuracy p -value Accuracy Accuracy p -value Accuracy p -value 

m = 5 73 .6 76 .32 1 .00 � 76 .45 1 .00 � 54 .69 50 .57 0 .00 ✱ 51 .34 0 .00 ✱ 

m = 10 82 .66 84 .01 0 .98 � 84 .05 0 .98 � 61 .99 59 .06 0 .00 ✱ 58 .97 0 .00 ✱ 

m = 15 – – – – – 64 .79 62 .75 0 .01 ✱ 62 .84 0 .01 ✱ 

m = 30 – – – – – 65 .99 64 .31 0 .02 ✱ 64 .42 0 .03 ✱ 

N Bayes Accuracy Accuracy p -value Accuracy p -value Accuracy Accuracy p -value Accuracy p -value 

m = 5 59 .67 61 .03 0 .96 � 59 .73 0 .53 53 .88 45 .06 0 .00 ✱ 45 .55 0 .00 ✱ 

m = 10 65 .83 67 .24 0 .96 � 66 0 .58 59 .20 52 .84 0 .00 ✱ 52 .21 0 .00 ✱ 

m = 15 – – – – 59 .99 55 .51 0 .00 ✱ 54 .61 0 .00 ✱ 

m = 30 – – – – 60 .08 56 .57 0 .00 ✱ 55 .77 0 .00 ✱ 

SVM Accuracy Accuracy p -value Accuracy p -value Accuracy Accuracy p -value Accuracy p -value 

m = 5 59 .34 61 .83 1 .00 � 60 .53 0 .94 50 .7 46 .54 0 .00 ✱ 47 .37 0 .00 ✱ 

m = 10 67 .23 69 .00 0 .99 � 68 .23 0 .90 60 .51 57 .16 0 .00 ✱ 58 .25 0 .00 ✱ 

m = 15 – – – – – 64 .93 63 .67 0 .06 65 .20 0 .63 

m = 30 – – – – – 67 .2 66 .48 0 .18 67 .71 0 .74 

CART Accuracy Accuracy p -value Accuracy p -value Accuracy Accuracy p -value Accuracy p -value 

m = 5 65 .35 66 .56 0 .92 65 .84 0 .72 53 .16 52 .78 0 .34 53 .77 0 .75 

m = 10 69 .93 70 .45 0 .72 70 .25 0 .65 61 .62 60 .21 0 .06 61 .30 0 .36 

m = 15 – – – – – 64 .61 63 .60 0 .13 64 .25 0 .34 

m = 30 – – – – – 65 .67 64 .74 0 .15 65 .21 0 .30 
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Table 3 

A comparison of the average classification accuracy based on the first m selected features. 

Mfeat Zernike Sonar 

MRmMC mRMR MIFS MRmMC mRMR MIFS 

5-NN Accuracy Accuracy p -value Accuracy p -value Accuracy Accuracy p -value Accuracy p -value 

m = 5 53 .06 53 .66 0 .90 53 .64 0 .88 74 .55 70 .13 0 .00 ✱ 71 .16 0 .02 ✱ 

m = 10 64 .43 64 .46 0 .53 62 .74 0 .00 ✱ 77 .92 72 .56 0 .00 ✱ 73 .15 0 .00 ✱ 

m = 15 69 .15 69 .42 0 .73 67 .98 0 .00 ✱ 79 .39 74 .7 0 .00 ✱ 74 .65 0 .00 ✱ 

m = 30 75 .05 74 .78 0 .25 74 .70 0 .19 81 .24 78 .76 0 .05 76 .45 0 .00 ✱ 

N Bayes Accuracy Accuracy p -value Accuracy p -value Accuracy Accuracy p -value Accuracy p -value 

m = 5 55 .96 55 .58 0 .24 55 .54 0 .20 75 .08 74 .81 0 .43 74 .00 0 .27 

m = 10 63 .62 62 .52 0 .02 ✱ 61 .55 0 .00 ✱ 74 .59 75 .87 0 .78 73 .59 0 .28 

m = 15 66 .28 65 .57 0 .08 64 .77 0 .00 ✱ 74 .41 76 .35 0 .88 73 .86 0 .37 

m = 30 69 .5 68 .24 0 .00 ✱ 69 .30 0 .34 74 .93 75 .62 0 .66 74 .15 0 .33 

SVM Accuracy Accuracy p -value Accuracy p -value Accuracy Accuracy p -value Accuracy p -value 

m = 5 56 .4 57 .08 0 .88 56 .82 0 .78 77 .44 73 .23 0 .01 ✱ 72 .18 0 .00 ✱ 

m = 10 65 .63 66 .24 0 .88 64 .51 0 .01 ✱ 77 .67 73 .97 0 .01 ✱ 72 .52 0 .00 ✱ 

m = 15 69 .81 71 .08 1 .00 � 68 .97 0 .04 ✱ 77 .12 75 .23 0 .12 73 .31 0 .01 ✱ 

m = 30 75 .66 76 .31 0 .94 75 .89 0 .70 77 .48 76 .58 0 .29 73 .86 0 .01 ✱ 

CART Accuracy Accuracy p -value Accuracy p -value Accuracy Accuracy p -value Accuracy p -value 

m = 5 49 .54 49 .47 0 .45 49 .45 0 .44 69 .96 66 .67 0 .04 ✱ 67 .01 0 .07 

m = 10 56 .83 57 .00 0 .62 55 .51 0 .01 ✱ 73 .54 67 .81 0 .00 ✱ 67 .4 0 .00 ✱ 

m = 15 59 .53 60 .40 0 .94 58 .46 0 .03 ✱ 73 .84 69 .4 0 .01 ✱ 67 .68 0 .00 ✱ 

m = 30 63 .37 63 .71 0 .73 62 .27 0 .02 ✱ 73 .16 70 .25 0 .05 68 .46 0 .00 ✱ 

Musk Mfeat Factors 

MRmMC mRMR MIFS MRmMC mRMR MIFS 

5-NN Accuracy Accuracy p -value Accuracy p -value Accuracy Accuracy p -value Accuracy p -value 

m = 5 69 .49 66 .98 0 .02 ✱ 67 .18 0 .02 ✱ 72 .36 75 .33 1 .00 � 72 .13 0 .32 

m = 10 73 .12 70 .52 0 .01 ✱ 69 .12 0 .00 ✱ 82 .63 84 .90 1 .00 � 81 .95 0 .05 

m = 15 74 .45 73 .16 0 .12 71 .48 0 .00 ✱ 86 .59 88 .25 1 .00 � 86 .11 0 .10 

m = 30 78 .53 78 .02 0 .31 75 .72 0 .00 ✱ 90 .98 92 .10 1 .00 � 90 .82 0 .31 

N Bayes Accuracy Accuracy p -value Accuracy p -value Accuracy Accuracy p -value Accuracy p -value 

m = 5 70 .3 52 .41 0 .00 ✱ 50 .31 0 .00 ✱ 72 .91 74 .09 0 .99 � 79 .56 1 .00 �

m = 10 72 .3 58 .61 0 .00 ✱ 56 .26 0 .00 ✱ 81 .83 82 .35 0 .90 83 .69 1 .00 �

m = 15 72 .35 63 .24 0 .00 ✱ 60 .33 0 .00 ✱ 85 .18 85 .11 0 .43 86 .31 1 .00 �

m = 30 75 .58 71 .78 0 .00 ✱ 68 .51 0 .00 ✱ 89 .22 89 .05 0 .31 89 .92 0 .98 �

SVM Accuracy Accuracy p -value Accuracy p -value Accuracy Accuracy p -value Accuracy p -value 

m = 5 74 .09 64 .29 0 .00 ✱ 63 .14 0 .00 ✱ 73 .85 75 .96 1 .00 � 72 .69 0 .01 ✱ 

m = 10 75 .31 67 .14 0 .00 ✱ 66 .58 0 .00 ✱ 83 .28 84 .86 1 .00 � 82 .57 0 .04 ✱ 

m = 15 76 .29 69 .42 0 .00 ✱ 69 .31 0 .00 ✱ 87 .02 88 .33 1 .00 � 86 .68 0 .18 

m = 30 77 .01 74 .00 0 .00 ✱ 74 .02 0 .00 ✱ 91 .32 92 .26 1 .00 � 91 .29 0 .46 

CART Accuracy Accuracy p -value Accuracy p -value Accuracy Accuracy p -value Accuracy p -value 

m = 5 70 .51 69 .64 0 .22 69 .75 0 .25 68 .45 70 .60 1 .00 � 66 .84 0 .00 ✱ 

m = 10 72 .43 71 .78 0 .29 71 .27 0 .16 76 .34 77 .93 1 .00 � 74 .68 0 .00 ✱ 

m = 15 73 .80 73 .72 0 .47 71 .61 0 .03 ✱ 79 .08 80 .33 0 .99 � 78 .05 0 .02 ✱ 

m = 30 75 .59 75 .25 0 .39 72 .93 0 .01 ✱ 82 .32 83 .37 0 .99 � 81 .64 0 .08 
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 -Nearest Neighbour ( k- NN), Naïve Bayes, Support Vector Machine

SVM) and CART classifier algorithms, are used to verify the classi-

cation capability of the performance of the MRmMC method for

eature subset selection. These classifiers were chosen not only be-

ause of their popularity but also because of their distinct learn-

ng mechanism. The aim is to test the overall performance of the

ewly proposed method in comparison to these popular classifiers.

Note that the number of nearest neighbours in the k NN classi-

er was chosen to be k = 5 in all experiments, and this is a fair

hoice for all the three methods: MRmMC, mRMR and MIFS. 

.4. Cross validation procedure 

For each of the classifiers, a same holdout cross-validation

cheme was used to test the performance. Particularly, 80% of the

ata were used for training whereas the remaining 20% were hold-

ut (for testing) and once the training completed, these holdout

ata were then used to assess the spotted classification models in

he testing stage. 

In addition, to reduce variability in the assessment, 30 rounds

f cross-validation were performed. The validation results are pre-

ented as the 95% confidence intervals for the classification accu-

acies based on the accuracies obtained from that 30 rounds. 
. Numerical results and discussion 

Figs. 2 –9 show classification results over different number of

elected features by the three feature selection methods, tested

ith the four classifiers. The x -axis in each figure represents the

umber of selected features while the y -axis represents the aver-

ge classification accuracy based on 30 rounds of cross-validation.

or clear visualization and due to space limitations, the plots only

resent the performance of the first 30 selected features even if

ore than 30 were selected. This doesn’t affect the performance

valuation of the feature selection methods. 

It can be observed that the overall pattern of the classifica-

ion accuracies of the three methods based on the selected feature

ubset for Mfeat Zernike and Mfeat Factors datasets is compara-

le to each other for all the four classifiers as illustrated in Figs.

 and 9 , respectively. Interestingly, the classification accuracy by

RmMC outperforms the other two methods if only a few number

f significant features need to be identified, and as more features

ere progressively added, MRmMC gains the same level of accu-

acy as the other two. This pattern is particularly distinct for Magic

amma, Vowel, Statlog, Mfeat Zernike, Sonar and Musk datasets as

epicted in Figs. 3 , 4 , 5 , 6 , 7 and 8 , respectively. 
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Table 4 

The least number of selected features, m least , by MRmMC, mRMR and MIFS methods that gives classification accu- 

racy close to (at most 5% less than the full set accuracy) or better than the full feature set. The symbol “•” (or 

“�”) denotes the proposed method has lower (or larger) value of m least than the compared method. Results are 

based on Glass, Magic Gamma, Vowel, Statlog, Mfeat Zernike and Sonar datasets. 

Glass Magic Gamma 

5-NN Full set accuracy m least Subset accuracy Full set accuracy m least Subset accuracy 

MRmMC 64 .52 ± 2.61 3 65 .16 ± 1.97 83 .72 ± 0.16 2 79 .46 ± 0.18 

mRMR 64.52 ± 1.96 3 65.32 ± 1.86 83.76 ± 0.20 4 • 79.56 ± 0.18 

MIFS 66.43 ± 2.27 3 62.30 ± 2.23 83.76 ± 0.19 5 • 79.46 ± 0.21 

Naïve Bayes Full set accuracy m least Subset accuracy Full set accuracy m least Subset accuracy 

MRmMC 61.67 ± 2.49 3 65.87 ± 2.44 76.13 ± 0.28 2 77.69 ± 0.23 

mRMR 60.48 ± 2.61 6 • 57.94 ± 2.66 76.22 ± 0.18 2 76.46 ± 0.15 

MIFS 61.59 ± 2.31 7 • 58.17 ± 2.59 76.27 ± 0.21 2 76.32 ± 0.24 

SVM Full set accuracy m least Subset accuracy Full set accuracy m least Subset accuracy 

MRmMC 63.17 ± 1.98 3 61.27 ± 2.46 79.16 ± 0.22 2 78.34 ± 0.20 

mRMR 63.65 ± 2.35 3 65.87 ± 1.59 78.98 ± 0.14 3 • 74.40 ± 0.24 

MIFS 64.21 ± 2.03 8 • 62.78 ± 2.53 79.06 ± 0.22 3 • 74.36 ± 0.24 

CART Full set accuracy m least Subset accuracy Full set accuracy m least Subset accuracy 

MRmMC 66.35 ± 2.52 3 63.10 ± 2.36 81.84 ± 0.22 4 77.41 ± 0.29 

mRMR 66.35 ± 2.30 3 64.84 ± 2.22 81.64 ± 0.21 6 • 77.84 ± 0.22 

MIFS 68.73 ± 2.41 5 • 66.27 ± 2.45 81.95 ± 0.32 7 • 78.41 ± 0.29 

Vowel Statlog 

5-NN Full set accuracy m least Subset accuracy Full set accuracy m least Subset accuracy 

MRmMC 91.55 ± 0.64 6 87.12 ± 0.82 71.78 ± 0.95 6 67.34 ± 1.04 

mRMR 91.73 ± 0.92 6 89.09 ± 0.75 72.13 ± 0.97 9 • 68.93 ± 1.19 

MIFS 91.45 ± 0.89 6 87.29 ± 1.00 71.87 ± 1.23 11 • 69.90 ± 1.12 

Naïve Bayes Full set accuracy m least Subset accuracy Full set accuracy m least Subset accuracy 

MRmMC 73.30 ± 1.19 7 72.73 ± 1.01 60.61 ± 1.25 5 59.03 ± 1.35 

mRMR 73.33 ± 1.03 6 � 69.87 ± 1.13 61.44 ± 1.24 7 • 60.06 ± 1.32 

MIFS 73.13 ± 1.28 7 71.06 ± 1.28 60.34 ± 1.38 6 • 57.04 ± 1.23 

SVM Full set accuracy m least Subset accuracy Full set accuracy m least Subset accuracy 

MRmMC 77.81 ± 1.12 8 73.23 ± 1.21 79.59 ± 0.92 16 76.11 ± 0.77 

mRMR 78.64 ± 1.18 8 75.57 ± 1.08 79.51 ± 0.89 13 � 76.00 ± 1.02 

MIFS 78.42 ± 0.83 8 75.00 ± 1.01 79.57 ± 0.93 12 � 77.57 ± 0.97 

CART Full set accuracy m least Subset accuracy Full set accuracy m least Subset accuracy 

MRmMC 74.07 ± 1.23 5 71.41 ± 1.11 70.75 ± 0.97 7 68.90 ± 1.43 

mRMR 74.75 ± 1.36 4 � 70.42 ± 1.11 70.37 ± 1.14 7 65.64 ± 1.31 

MIFS 74.58 ± 1.19 4 � 70.37 ± 1.08 69.57 ± 1.08 5 � 65.03 ± 1.19 

Mfeat Zernike Sonar 

5-NN Full set accuracy m least Subset accuracy Full set accuracy m least Subset accuracy 

MRmMC 80.61 ± 0.48 9 77.03 ± 0.52 78.13 ± 1.80 3 76.34 ± 2.17 

mRMR 80.60 ± 0.54 9 77.20 ± 0.65 79.43 ± 1.92 8 • 76.26 ± 1.96 

MIFS 80.58 ± 0.49 12 • 75.94 ± 0.60 77.89 ± 2.56 3 73.01 ± 1.74 

Naïve Bayes Full set accuracy m least Subset accuracy Full set accuracy m least Subset accuracy 

MRmMC 72.33 ± 0.70 6 67.58 ± 0.51 75.61 ± 2.59 2 72.52 ± 2.55 

mRMR 72.43 ± 0.68 8 • 70.25 ± 0.72 75.12 ± 2.42 2 71.79 ± 2.25 

MIFS 72.58 ± 0.70 8 • 68.69 ± 0.54 76.67 ± 1.41 3 • 75.69 ± 2.66 

SVM Full set accuracy m least Subset accuracy Full set accuracy m least Subset accuracy 

MRmMC 83.01 ± 0.57 14 78.17 ± 0.72 79.76 ± 2.25 3 78.70 ± 2.59 

mRMR 82.53 ± 0.41 9 � 77.64 ± 0.52 76.18 ± 2.47 2 � 72.36 ± 2.36 

MIFS 82.47 ± 0.45 15 • 78.38 ± 0.66 77.48 ± 1.86 4 • 72.93 ± 1.87 

CART Full set accuracy m least Subset accuracy Full set accuracy m least Subset accuracy 

MRmMC 66.58 ± 0.82 8 63.19 ± 0.67 73.01 ± 1.79 3 70.16 ± 2.82 

mRMR 66.09 ± 0.64 8 63.74 ± 0.80 72.28 ± 2.30 3 67.40 ± 2.90 

MIFS 66.68 ± 0.85 8 62.20 ± 0.81 73.66 ± 2.25 3 69.76 ± 3.06 
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Tables 2 and 3 summarize the mean of the average classifica-

tion accuracies based on a number of first selected features. The

results presented in rows with m = 5, 10, 15, and 30 provide the

average classification accuracies of the selected features from 2

to n f = min (m, M) , respectively, where M is the number of orig-

inal features. As suggested in [44] , the four ranges of the number

of selected features in our study here are representative as these

choices cover the approximate transitory period where the clas-

sification accuracy becomes stable for most of the datasets (see

Figs. 2–9 ). A one-tailed two-sample z- test was conducted for each

case of the m values in order to evaluate the null hypothesis ( H 0 )

that “the mean accuracy of the proposed method is greater than

the mean accuracy of the compared method” . The recorded p -

value is the probability corresponding to the z -test. A significant

difference is obtained to support the hypothesis if p is lower than
.05 (5% significance level). Meanwhile, if p is greater than 0.95

hen it can be concluded that the compared method outperforms

he proposed method. For ease of viewing, results in the p-value

olumns are marked with the symbol “∗” and “�” to indicate that

he MRmMC method is statically superior or inferior to the com-

ared method, respectively. The p -value columns which are not

ighlighted by any symbol indicate that the two methods are com-

arable. 

From Tables 2 and 3 , it can be observed that the MRmMC

ethod generally provides either better or comparable classifica-

ion accuracy in comparison with the other two methods for all

lassifiers when fewer features (e.g. 2–15 features) are used to rep-

esent all the candidate features, except in Vowel and Mfeat Fac-

ors. The performance of MRmMC is not as good as mRMR for the

owel dataset with Nearest Neighbour, Naïve Bayes and SVM clas-
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Table 5 

The least number of selected features, m least , by MRmMC, mRMR and MIFS methods that gives classification accu- 

racy close to (at most 5% less than the full set accuracy) or better than the full feature set. The symbol “•” (or 

“�”) denotes the proposed method has lower (or larger) value of m least than the compared method. Results are 

based on Musk and Mfeat Factors datasets. 

Musk Mfeat Factors 

5-NN Full set accuracy m least Subset accuracy Full set accuracy m least Subset accuracy 

MRmMC 88 .49 ± 0.96 21 83 .89 ± 0.91 96 .47 ± 0.26 8 92 .20 ± 0.50 

mRMR 88.21 ± 1.21 23 • 83.54 ± 1.23 96.55 ± 0.24 7 � 92.34 ± 0.37 

MIFS 87.37 ± 1.14 30 • 84.00 ± 1.41 96.63 ± 0.30 9 • 92.17 ± 0.51 

Naïve Bayes Full set accuracy m least Subset accuracy Full set accuracy m least Subset accuracy 

MRmMC 82.81 ± 1.63 20 77.88 ± 2.37 93.87 ± 0.39 8 89.34 ± 0.64 

mRMR 82.14 ± 1.08 17 � 78.76 ± 2.19 94.08 ± 0.39 9 • 89.59 ± 0.38 

MIFS 80.91 ± 1.50 20 76.86 ± 1.59 93.87 ± 0.32 10 • 90.03 ± 0.47 

SVM Full set accuracy m least Subset accuracy Full set accuracy m least Subset accuracy 

MRmMC 85.68 ± 0.99 40 81.47 ± 1.22 97.46 ± 0.25 10 92.79 ± 0.51 

mRMR 85.05 ± 1.67 40 80.28 ± 1.61 97.62 ± 0.28 9 � 92.97 ± 0.48 

MIFS 85.05 ± 1.27 30 � 80.88 ± 1.20 97.74 ± 0.27 10 93.68 ± 0.50 

CART Full set accuracy m least Subset accuracy Full set accuracy m least Subset accuracy 

MRmMC 77.09 ± 1.63 5 72.67 ± 1.17 88.38 ± 0.55 9 84.17 ± 0.73 

mRMR 78.74 ± 1.76 9 • 75.02 ± 1.37 88.01 ± 0.57 7 � 83.67 ± 0.67 

MIFS 77.30 ± 1.97 7 • 75.12 ± 1.69 87.88 ± 0.58 9 83.09 ± 0.59 

Table 6 

A comparison of win/tie/loss counts of the 

MRmMC method against the other methods. 

The counts are based on the results presented 

in Tables 4 and 5 . 

Win/tie/lose mRMR MIFS 

5-NN 4/3/1 5/3/0 

Naïve Bayes 4/2/2 5/3/0 

SVM 1/3/4 4/2/2 

CART 2/4/2 3/3/2 

Average 2 .75/3/2.25 4 .25 2.75/1 
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ifiers but is comparable to mRMR with CART classifier. Further-

ore, MRmMC is only slightly inferior to the MIFS method for the

owel dataset with Nearest Neighbour classifier. 

Considering each classifier used, the MRmMC method is only

nferior to either mRMR or MIFS for the Mfeat Factors dataset.

pecifically, the MRmMC method shows slightly lower performance

han the MIFS method with Naive Bayes classifier yet compa-

able/better performance with the other three classifiers, while

onversely, MRmMC produces comparable performance with the

RMR with Naive Bayes classifier but slightly lower performance

ith the other three classifiers. 

Tables 4 and 5 present the performance of MRmMC, mRMR and

IFS methods, generated by using the least number of selected

eatures, m least , with which a classification accuracy more than or

lose to that obtain by using the complete dataset (with no more

han 5% difference). Results from Tables 4 and 5 are further sum-

arized in Table 6 with an intention to specifically demonstrate

he capability of the MRmMC method in representing the full fea-

ure set. The win/tie/loss scores reported in Table 6 represent the

umber of benchmark datasets for which the MRmMC method

ives lower/equal/higher number of selected features in compari-

on to other methods. 

As can be seen from Table 6 , the MRmMC method performs

etter than the MIFS for all four classifiers. It performs better for

wo out of four classifiers and shows comparable performance for

he fourth classifier (CART) when compared to the mRMR method

ut does not perform well with SVM classifier. It can also be no-

iced that MRmMC gives outstanding performance with Nearest

eighbour and Naïve Bayes classifiers. Based on the average results

iven in the last row of Table 6 , it can be concluded that the MR-

MC method is the winner in overall when only a small number

f features are required to represent the full feature set. 
. Conclusions 

The MRmMC method uses a hill-climbing search structure with

 straightforward measurement criterion that makes it simple and

asy to implement. It is a filter feature selection method as it

ses no specific classification scheme in the selection process, and

herefore it works well with popular classifiers such as k-NN, naïve

ayes, SVM and CART. 

Although the method may not always find the optimal subset

s the search is non-exhaustive, it is shown from the experimen-

al and numerical case studies that the method is competent for

eature selection and dimensionality reduction. 

As mentioned in Section 5 , MRmMC possesses several attrac-

ive properties, one of which is that there is no need to pre-specify

ontrol parameters as required in MIFS methods, and another im-

ortant one is that it is relatively easier to implement. 

The conditional correlation coefficient defined by ( 16 ) can well

eveal linear relation between two variables X and Y . It also can

eveal nonlinear relation if there is a clear functional relationship

etween X and Y in the strict sense of word. Therefore, the pro-

osed method can well capture linear relations between features,

nd can also identify nonlinear relations if features are related to

ach other in some nonlinear manners. A limitation of MRmMC is

hat the proposed redundancy measure can is reliable for quanti-

ative features, but cannot effectively evaluate the redundancy be-

ween a quantitative and a nominal random variable. 

In future work, it is of interest to make use of other measures

o assess feature redundancy and combine this idea with the fea-

ure relevancy measure applied in this paper. The combination is

xpected to form a new criterion that can be used to effectively

eal with both nominal and quantitative features. It would be also

nteresting to explore the new criterion with other feature search

trategies such as floating search selection and nature-inspired se-

ection in order to find better feature subset solutions. 
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