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Abstract System identification and data-driven modeling
techniques have seen ubiquitous applications in the past
decades. In particular, parametric modeling methodologies
such as linear and nonlinear autoregressive with exoge-
nous input models (ARX and NARX) and other similar
and related model types have been preferably applied to
handle diverse data-driven modeling problems due to their
easy-to-compute linear-in-the-parameter structure, which
allows the resultant models to be easily interpreted. In
recent years, several variations of the NARX methodol-
ogy have been proposed that improve the performance of
the original algorithm. Nevertheless, in most cases, NARX
models are applied to regression problems where all out-
put variables involve continuous or discrete-time sequences
sampled from a continuous process, and little attention has
been paid to classification problems where the output sig-
nal is a binary sequence. Therefore, we developed a novel
classification algorithm that combines the NARX method-
ology with logistic regression and the proposed method
is referred to as logistic-NARX model. Such a combina-
tion is advantageous since the NARX methodology helps
to deal with the multicollinearity problem while the logis-
tic regression produces a model that predicts categorical
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outcomes. Furthermore, the NARX approach allows for the
inclusion of lagged terms and interactions between them in
a straight forward manner resulting in interpretable mod-
els where users can identify which input variables play an
important role individually and/or interactively in the clas-
sification process, something that is not achievable using
other classification techniques like random forests, support
vector machines, and k-nearest neighbors. The efficiency of
the proposed method is tested with five case studies.

Keywords Nonlinear system identification · Dynamic
systems · Binary classification · NARX models · Logistic
regression

1 Introduction

System identification focuses on finding models from data
and use them to understand or analyze the properties or
behaviors of the underlying systems [1].

Linear models have been widely used in many applica-
tions [2]. However, its applicability is limited since most of
the real world problems may not be well presented using
linear models [3]. Research on nonlinear system identifi-
cation has been carried out and advanced since the 1980s
[1]. One of the most popular methodologies is the Nonlin-
ear AutoRegressive Moving Average with eXogenous input
(NARMAX) methodology, which has proved to be suitable
for a wide class of nonlinear systems [1, 4–8]. The NAR-
MAX approach can detect an appropriate model structure
and select the most important model terms from a dictionary
consisting of a great number of candidate model terms.

In recent years, several variants have been proposed that
improve the performance of the original algorithm. Such
variations include the use of more complex and flexible
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predefined functions [6, 9–13], novel dependency metrics
[5, 8, 14–21], or different search mechanisms [22–26]. Nev-
ertheless, the different versions of the NARX methodology
have been designed under the assumption that the variables
involved are continuous.

Many real-life systems involve a mixed combination of
continuous and discrete variables. In this work, we focus on
systems with binary responses that depend on continuous
time predictors. Binary responses are commonly studied in
many situations such as the presence or absence of a disease,
granting a loan, or detecting the failure of a process, system,
or product [27, 28]. However, the use of traditional regres-
sion techniques to deal with systems with a dichotomous
response variable may not be appropriate given that they are
sensitive to outliers and the distribution of the classes [27].

In this work, we propose a novel approach that com-
bines logistic regression with the NARX methodology. The
main motivation comes from the fact that logistic regression
models are more suitable for binary classification prob-
lems given that they provide probabilities of belonging or
not to a particular class. One important consideration when
constructing a logistic regression model is multicollinear-
ity. In general, it is important to always check for high
inter-correlations among the predictor variables. In the ideal
scenario, the predictor variables will have a strong relation-
ship to the dependent variable but should not be strongly
related to each other [29]. This problem is adequately solved
using the NARX approach, since the model terms selected
are orthogonal (uncorrelated) to each other. Furthermore,
the NARX approach allows for the inclusion of lagged
terms and interactions between them in a straight forward
manner resulting in interpretable models, something that is
not achievable using other popular classification techniques
like random forests [30], support vector machines [31], and
k-nearest neighbors [32].

This work is organized as follows. Section 2 includes
a brief summary of nonlinear system identification and
a discussion of the Orthogonal Forward Regression algo-
rithm. In Section 3, our new methodology is described.
Section 4 presents three numerical case studies that show the
effectiveness of our new method. In Section 5, the logistic-
NARX model is applied to two real applications. Section 6
discusses advantages and disadvantages of the technique.
The work is concluded in Section 7.

2 Nonlinear system identification

System identification, as a data-based modeling approach,
aims to find a model from available data that can represent
as close as possible the system input and output relation-
ship [1, 2]. While conventionally linear models have been
applied in many applications, its applicability is limited as

the linearity assumption may be violated for many nonlinear
system modeling problems [3]. Nonlinear system identi-
fication techniques have been advanced since the 1980s
[1]. In particular, the Nonlinear AutoRegressive Moving
Average with eXogenous input (NARMAX) methodology
has proved to be a powerful tool for nonlinear system
identification [1, 12, 33, 34].

In general, system identification consists of several steps,
including data collection and processing, selection of math-
ematical representation, model structure selection, param-
eter estimation, and model validation[2]. Data processing
is an important part given that data preparation plays a
key role when training a model. Generally, this consists
of dealing with missing values and outliers, data normal-
ization and transformation, dimensionality reduction, and
performing feature engineering. In [32, 35], these issues are
widely discussed. Regarding the selection of mathematical
representation, this work focuses on NARX models. Model
structure detection has been tackled using different meth-
ods like clustering [36, 37], the Least Absolute Shrinkage
and Selection Operator (LASSO) [38, 39], elastic nets [40,
41], genetic programming [42, 43], the Orthogonal Forward
Regression (OFR) using the Error Reduction Ratio (ERR)
approach [33], and the bagging methodology [21]. Param-
eter estimation has been performed using the traditional
least squares method, gradient descent, and the Metropolis-
Hastings algorithm [44, 45]. Finally, for model validation,
a set of statistical correlation tests have been developed in
[46] and can be used to test and verify the validity of the
identified nonlinear input-output models. In summary, sys-
tem identification is a process that builds a parsimonious
model that satisfies a set of accuracy and validity tests [10].

2.1 Orthogonal forward regression algorithm

The NARX model is a nonlinear recursive difference equa-
tion with the following general form:

y (k) = f
(
y (k − 1) , . . . , y

(
k − ny

)
,

u (k − 1) , . . . , u (k − nu)
)

+ e (k) (1)

where f (·) represents an unknown nonlinear mapping,
y (k), u (k), and e (k) are the output, input, and prediction
error sequences with k = 1, 2, . . . , N , and the maximum
lags for the output and input sequences are ny and nu

[8]. Most approaches assume that the function f (·) can be
approximated by a linear combination of a predefined set

of functions φm

(
ϕ (k)

)
, therefore (1) can be expressed in a

linear-in-the-parameter form

y (k) =
M∑

m=1

θmφm

(
ϕ (k)

)
+ e (k) (2)
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where θm are the coefficients to be estimated, φm

(
ϕ (k)

)

are the predefined functions that depend on the regressor

vector ϕ (k) =
[
y (k − 1) , . . . , y

(
k − ny

)
, u (k − 1) , . . . ,

u (k − nu)
]T

of past outputs and inputs, and M is the

number of functions in the set.
The most popular algorithm for NARX modeling is the

Orthogonal Forward Regression (OFR) algorithm. As a
greedy algorithm [4], it adopts a recursive partitioning pro-
cedure [47] to fit a parsimonious NARX model which can
be represented as a generalized dynamic linear regression
problem [8, 48]. One of the most commonly used NARX
models is the polynomial NARX representation, where (2)
can be explicitly written as

y (k) = θ0+
n∑

i1=1
θi1xi1 (k)+

n∑
i1=1

n∑
i2=i1

θi1i2xi1 (k) xi2 (k)+· · ·

+
n∑

i1=1

· · ·
n∑

i�=i�−1

θi1i2...i�xi1 (k) xi2 (k) ...xi� (k)+e (k)

(3)

where

xm (k) =
{

y (k − m) 1 ≤ m ≤ ny

u
(
k − m + ny

)
ny + 1 ≤ m ≤ n = ny + nu

(4)

and � is the nonlinear degree of the model. A NARX model
of order � means that the order of each term in the model is
not higher than �. The total number of potential terms in a
polynomial NARX model is given by

M =
(

n + �

�

)
= (n + �)!

n! · �! (5)

The OFR algorithm implements a stepwise regression
to select the most relevant regressors, one at a time; it
uses the error reduction ratio (ERR) as an index to mea-
sure the significance of each candidate model term [1].
The OFR algorithm can be used to transform a number
of selected model terms to a set of orthogonal vectors,
for which ERR can be evaluated by calculating the non-
centralized squared correlation coefficient C (x, y) between
two associated vectors x and y [5]

C (x, y) =
(
xT y

)2
(
xT x

) (
yT y

) (6)

In recent years, several variants of the algorithm have
been proposed that modify the predefined functions, the
dependency metric, or the search mechanism in order to
enhance its performance. In particular, an important issue
is that the noncentralized squared correlation only detects

linear dependencies. To solve this, new metrics have been
implemented that are able to capture nonlinear depen-
dencies [5, 8]. Some of these new metrics are entropy,
mutual information [5, 8, 14, 15], simulation error [20],
and distance correlation [21]. Furthermore, more complex
predefined functions have been used recently like wavelets
[9–12], radial basis functions [6, 13], and ridge basis func-
tions [49], together with improved search mechanism like
common model structure selection [22–24], iterative search
[25], and incorporation of weak derivatives information
[26].

Most of these variants are able to obtain good one-step
ahead (OSA) predictions,

ŷ (k) = f
(
y (k − 1) , . . . , y

(
k − ny

)
,

u (k − 1) , . . . , u (k − nu)
)

(7)

However, because the NARX model (1) depends on past
outputs, a more reliable way to check the validity of the
model is through the model predicted output (MPO) [50],
which uses past predicted outputs to estimate future ones,

ŷ (k) = f
(
ŷ (k − 1) , . . . , ŷ

(
k − ny

)
,

u (k − 1) , . . . , u (k − nu)
)

(8)

The MPO can provide details about the stability and pre-
dictability range of the model. In [51], the authors developed
a lower bound error for the MPO of polynomial NAR-
MAX models, which can be used to detect when a model
simulation is not reliable and needs to be rejected.

In the literature, some authors have adapted the original
OFR algorithm to optimize directly the MPO in order to
obtain a better long-term prediction; however, these modi-
fied versions tend to be computationally expensive during
the feature selection step given that (8) needs to be evaluated
N times (where N is the size of the training set) before com-
puting a single value of the dependency metric, i.e., ERR,
for the selection of each single model term [1, 20]. Further-
more, these versions are not easily extendable to large model
searches which are often necessary when dealing with real
systems or MIMO system identification [1].

3 Logistic-NARX modeling approach

Classification problems ubiquitously exist in all areas of sci-
ence and engineering, where the aim is to identify a model
that is able to classify observations or measurements into
different categories or classes. Many methods and algo-
rithms are available which include logistic regression [27,
28], random forest [30], support vector machines [31], and
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k-nearest neighbors [32]. The latter three are very popu-
lar but their major drawback is that they remain as black
boxes for which the interpretation of the models may not be
straightforward. Although it is possible to obtain an impor-
tant index for the predictors in the model, this does not help
in understanding the possible inner dynamics of a system.
On the other hand, logistic regression is an approach that
produces a model to predict categorical outcomes. The pre-
dicted values are probabilities and are therefore restricted to
values between 0 and 1 [29]. Logistic regression uses the
logistic function defined as

f (x) = 1

1 + exp (−x)
(9)

where x has an unlimited range, i.e., x ∈ R, and f (x) is
restricted to range from 0 to 1 [28]. One issue with logistic
regression models is that they require the model terms and
the interactions between them to be specified beforehand.
This is problematic since it is important to always check
for high inter-correlations among the predictor variables. In
the ideal scenario, the predictor variables will be strongly
related to the dependent variable but not strongly related to
each other in order to avoid the multicollinearity problem
[29].

The new approach proposed in this paper combines the
logistic function with the NARX representation in order to
obtain a probability model

p (k) = 1

1 + exp
[
− ∑M

m=1 θmφm

(
ϕ (k)

)] (10)

For convenience, let us assume that the output sequence
y (k) can be either y (k) = 1 or y (k) = 0 for k =
1, 2, . . . , N , where y (k) = 1 denotes the occurrence of
the event of interest. It is important to mention that in con-
trast with the original OFR algorithm presented in [52] that
requires a threshold for the total of ERR, the user needs
to specify the maximum number of terms nmax that the
algorithm will look for [7]. Furthermore, traditionally, the
OFR algorithm relies on the ERR index (6) to determine
the significance of a model term with respect to the output
sequence. However, this metric is no longer useful given that
the output is a binary sequence and the information from the
class denoted as 0 would be lost. To overcome this issue, the
biserial correlation coefficient is used, which measures the
strength of the association between a continuous variable
and a dichotomous variable [29]. The biserial correlation
coefficient is defined as

r (x, y) = X1 − X0

σX

√
n1n0

N2
(11)

where X0 is the mean value on the continuous variable
X for all the observations that belong to class 0, X1 is
the mean value of variable X for all the observations that
belong to class 1, σX is the standard deviation of variable
X, n0 is the number of observations that belong to class 0,
n1 is the number of observations that belong to class 1, and
N is the total number of data points.

The pseudo-code of the proposed algorithm is described
in Algorithm 1, where regressors (model terms) are selected
using an OFR algorithm, which has been widely discussed
in the literature [1]. In Algorithm 1, lines from 1 to 4 aim
to find candidate model terms that make most significant
contributions in explaining the variation of the system out-
put measured by the biserial correlation coefficient. Once
found, lines 5–8 create a simple logistic model using the
maximum likelihood estimation method and assess its per-
formance using a k-fold cross-validation accuracy. New
candidate terms are orthogonalized with respect to the
model terms already chosen using the modified Gram-
Schmidt method, and evaluated using the biserial correlation
coefficient. This process is repeated in lines 10–22 until it
reaches a pre-specified maximum number nmax of model
terms to be included in the final model, where nmax ≤ M .
Lines 13–15 are used to calculate the squared norm-2 of
each candidate model term, based on which it decides if a
candidate term should be excluded to avoid any potential
ill-conditional issue. When a new model term is included,
a logistic regression model is trained and the k-fold cross-
validation accuracy is computed in lines 20–21. When the
iteration reaches the specified number nmax , a parsimo-
nious model consisting of a total of up to nmax model
terms is then selected in line 23 based on the best cross-
validation accuracy obtained. Finally, the algorithm returns
the parameters θ together with the selected model terms.
Given that the optimal number of model terms is not known
in advance, the parameter nmax can be selected heuristi-
cally, by running Algorithm 1 several times, and checking
the resulted cross-validation accuracy curve. In case the
best model contains exactly nmax model terms, this means
that the appropriate number of model terms may be beyond
this value; therefore, it could be increased to find a better
model.

The proposed algorithm combines the transparency and
efficiency of the NARX models with logistic regression
to deal with classification problems. This combination is
advantageous since the NARX methodology helps to deal
with the multicollinearity problem because of the orthogo-
nalisation process that takes places. Furthermore, the NARX
approach allows for the inclusion of lagged terms and
interactions between them in a straight forward manner
resulting in interpretable models, something that is not
achievable using random forests, support vector machines,
and k-nearest neighbors.
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The time complexity of the logistic-NARX method is
determined by three main parts: the assessment of feature
relevancy to the class label, the computation of the logis-
tic regression model, and the orthogonalization operations.
Feature relevancy assessment has a linear time complex-
ity of O (NM), where N is the number of observations
and M is the number of candidate features. The com-
putation of the regression model has a worst-case time
complexity of O

(
M3 + NM

)
[53], while the orthogonal-

ization procedure has a complexity of O (N (M − 1)) [54].
As a result, the overall time complexity takes the order of
O

(
M3 + NM

)
.

4 Numerical simulation case studies

In this section, three simulation examples are provided
to illustrate the effectiveness of the new logistic-NARX
methodology. Data are generated from three nonlinear mod-
els driven by lagged input variables, along with some noise.
In all cases, we compare the performance of our algorithm
with traditional classification techniques. For simplicity,
we focus on polynomial NARX models described in (3),
although our algorithm can be applied to other NARX mod-
els using wavelets [10, 12] or radial basis functions [6,
13].

4.1 Example 1

Assume we have the following input-output system:

y (k) =
⎧⎨
⎩
1 if u2 (k) + 2v2 (k)

−0.8u2 (k) v (k) + e (k) < 1
0 otherwise

(12)

where the inputs u (k) and v (k) are uniformly distributed
between [−1, 1], i.e., u (k) , v (k) ∼ U (−1, 1), and e (k) ∼
N

(
0, 0.32

)
. A total of 1000 input-output data points were

collected. Plotting such points produces the figure shown in
Fig. 1.

Most classification techniques are able to perform static
binary classification with high accuracy. We apply our new
algorithm to this dataset. The data is separated in a training
set (700 points) and a testing set (300 points). Given that
this is a static problem, no lags are used, and the nonlinear
degree is chosen as � = 3, which results in a search space
with 10 model terms. Therefore, the maximum number of
terms is selected as nmax = 10, and 10 folds are used to
compute the cross-validation accuracy. Figure 2 shows the
cross-validation accuracy plot obtained after applying Algo-
rithm 1 suggests that no significant improvement is obtained

Fig. 1 Data points obtained from the input-output system given in
(12)
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Fig. 2 Cross-validation accuracy plot obtained for (12) using Algo-
rithm 1

in accuracy with models that have more than four model
terms. Therefore, a model with four terms is chosen and
these are shown in Table 1. Such results show that our algo-
rithm was able to identify correctly all model terms involved
in the decision boundary for (12). The parameters obtained
are log odds ratios; therefore, they do not necessarily need
to resemble the ones in the decision boundary function.

For comparison purposes, a regression-like NARXmodel
based on the approach suggested in [7], a random forest with
500 trees, a support vector machine with a radial basis ker-
nel, and a k-nearest neighbors model are trained with the
same training set. All models are compared using the testing
set and the classification accuracy. The results are shown in
Table 2. It can be seen that our new method has a compara-
ble performance with the rest of the techniques, making it a
feasible alternative for static binary classification problems.

4.2 Example 2

Let us consider a slightly different version of (12) as
follows:

y (k) =
⎧⎨
⎩
1 if u2 (k − 1) + 2v2 (k − 2)

−0.8u2 (k − 2) v (k − 1) + e (k) < 1
0 otherwise

(13)

Table 1 Identified model terms for (12) using Algorithm 1

Model term Parameter

v2 (k) −12.297

Constant 6.459

u2 (k) −6.632

u2 (k) v (k) 4.470

Table 2 Comparison of accuracy performance between different
methods for modeling of (12)

Method Classification accuracy

Logistic-NARX 0.8829

Regression NARX 0.8763

Random forest 0.8729

Support vector machine 0.8796

K-nearest neighbors 0.8428

Plotting again the 1000 data points results in the figure
shown in Fig. 3. As it can be observed, there is not a clear
boundary between the two classes as in Fig. 1. This is a
problem as it can be wrongly suggested that the two classes
cannot be separated.

We apply our new algorithm to this dataset. The data is
separated in a training set (the first 700 points) and a test-
ing set (the last 300 points). The maximum lags for the
inputs and output are chosen to be nu = ny = 4, and the
nonlinear degree is � = 3, which results in a search space
with 165 model terms. The maximum number of terms is
selected as nmax = 10, and 10 folds are used to compute
the cross-validation accuracy. Figure 4 shows the cross-
validation accuracy plot obtained after applying Algorithm
1 and it suggests that the most parsimonious model with
the best accuracy has four model terms. These are shown
in Table 3. Such results show that our algorithm was able
to identify correctly all model terms involved in the deci-
sion boundary for (13). Again, the parameters obtained are
log odds ratios; therefore, they do not necessarily need to
resemble the ones in the decision boundary function.

For comparison purposes, a regression-like NARXmodel
based on the approach suggested in [7], a random for-
est with 500 trees, a support vector machine with a radial

Fig. 3 Data points obtained from the input-output system given in
(13)
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Fig. 4 Cross-validation accuracy plot obtained for (13) using Algo-
rithm 1

basis kernel, and a k-nearest neighbors model are trained
with the same training set. In general, traditional classifi-
cation techniques do not consider lagged variables unless
these are explicitly included; therefore, two cases are con-
sidered: the first case assumes that no autoregressive terms
are available; therefore, only u (k) and v (k) are used. In
the second one, the same lagged input and output vari-
ables that were considered for the logistic-NARX model are
used with the maximum lags chosen to be nu = ny = 4
(the regression-like NARXmodel only considers the second
case). All models are compared using the testing set and the
OSA accuracy. The results are shown in Table 4. It can be
seen that for this case study the classification accuracy of
the proposed method is nearly the same as that of regres-
sion NARX and random forest methods, but is much better
than that of support vector machine and k-nearest neighbor
approaches. This is expected given the NARX-like structure
that generates the data. Nevertheless, the regression-like
NARX model produces real-valued outputs, which make
them difficult to interpret for classification. On the other
hand, the logistic-NARX model is preferred because its out-
puts are restricted to range from 0 to 1, and they can be used
as classification probabilities. Furthermore, the random for-
est, support vector machine, and k-nearest neighbors models

Table 3 Identified model terms for (13) using Algorithm 1

Model term Parameter

v2 (k − 2) −12.508

Constant 6.155

u2 (k − 1) −6.086

u2 (k − 2) v (k − 1) 4.582

are not able to generate reliable results if lagged variables
(i.e., values observed in some previous time instants) are
not taken into account when defining the feature vector;
however, their performance is increased when the autore-
gressive input variables are included. Although it may be
argued that our method is just slightly better than the ran-
dom forest with autoregressive inputs, it must be taken into
consideration that the logistic-NARX model is transparent
and the role or contribution of individual regressors can be
known.

4.3 Example 3

Assume we have the following input-output system:

y (k) =

⎧⎪⎪⎨
⎪⎪⎩

1 if − u (k − 1)
√|v (k − 1)|

+0.5u3 (k − 1)
+ sin (v (k − 2)) + e (k) < 0

0 otherwise

(14)

where the inputs u (k) and v (k) are uniformly distributed
between [−1, 1], i.e., u (k) , v (k) ∼ U (−1, 1), the error
sequence is given by e (k) = w (k) + 0.3w (k − 1) +
0.6w (k − 2) and w (k) is normally distributed with zero
mean and variance of 0.01, i.e.,w (k) ∼ N (0, 0.01). A total
of 1000 input-output data points were collected.

We apply our new algorithm to this dataset. The data is
separated in a training set (the first 700 points) and a test-
ing set (the last 300 points). The maximum lags for the
inputs and output are chosen to be nu = ny = 4, and the
nonlinear degree is � = 3, which results in a search space
with 165 model terms. The maximum number of terms is
selected as nmax = 10, and 10 folds are used to compute
the cross-validation accuracy. Figure 5 shows the cross-
validation accuracy plot obtained after applying Algorithm
1 and it suggests that the most parsimonious model with the
best accuracy has eight model terms. These are shown in
Table 5.

Similarly to the previous case study, a regression-like
NARX model based on the approach suggested in [7], a
random forest with 500 trees, a support vector machine
with a radial basis kernel, and a k-nearest neighbors model
are trained with the same training set. Again, two cases
are considered: the first case assumes that no autoregres-
sive terms are available; therefore, only u (k) and v (k) are
used. In the second one, the same lagged input and out-
put variables that were considered for the logistic-NARX
model are used with the maximum lags chosen to be nu =
ny = 4, and the nonlinear degree is � = 3, which
results in a search space with 165 model terms. All models
are compared using the testing set and the OSA accu-
racy. The results are shown in Table 6, where it is seen
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Table 4 Comparison of
accuracy performance between
different methods for modeling
of (13)

Method Classification accuracy

Logistic-NARX 0.8581

Regression NARX 0.8581

Random forest (without autoregressive inputs) 0.5034

Support vector machine (without autoregressive inputs) 0.5574

K-nearest neighbors (without autoregressive inputs) 0.5267

Random forest (with autoregressive inputs) 0.8514

Support vector machine (with autoregressive inputs) 0.777

K-nearest neighbors (with autoregressive inputs) 0.6284

that the new method is a competitive alternative to other
classification techniques. Our algorithm performs slightly
better than the regression-like NARX and random forest
models with autoregressive inputs, but obviously outper-
forms the support vector machine and k-nearest neighbor
methods. Once more, the advantage over the random for-
est models is the transparency and interpretability about
the role or contribution of individual regressors. Also, the
advantage over the regression-like NARX model is a more
interpretable output that is easily related to a classification
probability.

5 Application to real data

In this section, two real scenarios are presented where the
methodology is applied to the detection of cancerous cells
in a Breast Cancer dataset [55–57], and the detection of
human eye blinking using an electroencephalogram dataset
[57]. Again, we compare the performance of our algorithm
with traditional classification techniques. For simplicity, we
focus on polynomial NARX models described in (3).

Fig. 5 Cross-validation accuracy plot obtained for (14) using Algo-
rithm 1

5.1 Breast cancer classification

Breast cancer is the most common cancer in women world-
wide [56]. Among the different prevention and control
techniques, early detection is still the best method in order
to improve breast cancer outcome and survival [58]. For this
case study, we use the Breast Cancer dataset from the Uni-
versity of Wisconsin Hospitals, Madison, from Dr. William
H. Wolberg [57]. This dataset contains 699 instances with
the following ten attributes:

– ID number
– Clump thickness (integer value between 1 and 10)
– Uniformity of cell size (integer value between 1 and 10)
– Uniformity of cell shape (integer value between 1 and

10)
– Marginal adhesion (integer value between 1 and 10)
– Single epithelial cell size (integer value between 1 and

10)
– Bare nuclei (integer value between 1 and 10)
– Bland chromatin (integer value between 1 and 10)
– Normal nucleoli (integer value between 1 and 10)
– Mitoses (integer value between 1 and 10)
– Class (2 for benign, 4 for malignant)

The bare nuclei attribute contains 16 missing values. Such
instances were removed from the analysis. Also, the ID
number attribute does not provide any meaningful informa-
tion for the classification task, so it is removed from the

Table 5 Identified model terms for (14) using Algorithm 1

Model term Parameter

v (k − 2) −12.755

Constant 0.224

u (k − 1) v2 (k − 1) 8.488

v3 (k − 2) −15.323

u (k − 1) v2 (k − 2) 10.066

u (k − 1) 9.047

u3 (k − 1) −8.715

u (k − 1) u2 (k − 4) −3.285
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Table 6 Comparison of
accuracy performance between
different methods for modeling
of (14)

Method Classification accuracy

Logistic-NARX 0.9392

Regression NARX 0.9358

Random forest (without autoregressive inputs) 0.527

Support vector machine (without autoregressive inputs) 0.4932

K-nearest neighbors (without autoregressive inputs) 0.47

Random forest (with autoregressive inputs) 0.9223

Support vector machine (with autoregressive inputs) 0.8986

K-nearest neighbors (with autoregressive inputs) 0.7973

dataset. The class attribute is recoded with “0” for a benign
case and “1” for a malignant. The rest of the attributes are
divided by 10 in order to have feature values ranging from
0.1 to 1.

The data is separated in a training set (400 instances
with 200 samples from each class) and a testing set (283
instances). The frequency of the class for each set is shown
in Fig. 6 where it can be noticed that each cancer type has
the same frequency in the training set; however, this is not
the case in the testing set. Nevertheless, this is not a signifi-
cant issue as the training phase has access to a good balance
of the two classes that need to be identified, while the imbal-
anced testing set can be used to check the performance of
the trained model.

Given that this is a static problem, no lags are used, and
the nonlinear degree is chosen as � = 2 based on [33]. These
results in a search space with 55 model terms. Therefore, the
maximum number of terms to search is selected as nmax =
10, and 10 folds are used to compute the cross-validation

Fig. 6 Frequency of each cancer type for the training and testing sets

accuracy. Figure 7 shows the cross-validation accuracy plot
obtained after applying Algorithm 1 and it suggests that no
significant improvement is obtained in accuracy with mod-
els that have more than three model terms. Therefore, a
model with three terms is chosen and these are shown in
Table 7.

Once more, a regression-like NARX model based on the
approach suggested in [7], a random forest with 500 trees, a
support vector machine with a radial basis kernel, and a k-
nearest neighbors model are trained with the same training
set. All models are compared using the testing set and the
classification accuracy. The results are shown in Table 8. All
the methods are able to obtain a good classification accu-
racy. Although the logistic NARX has not the best accuracy,
the difference with the best ones is negligible. This makes
the logistic-NARX model a competitive alternative to other
classification techniques.

5.2 Electroencephalography eye state identification

Recently, electroencephalography eye state classification
has become a popular research topic with several applica-
tions in areas like stress features identification, epileptic
seizure detection, human eye blinking detection, among oth-
ers [59]. For this case study, we use the EEG Eye State
dataset found at the UCIMachine Learning Repository [57].
This dataset contains 14,980 EEG measurements from 14
different variables taken with the Emotiv EEG neurohead-
set during 117 seconds. The eye state of the patient was
detected with the aid of a camera during the experiment. If
the eye is closed, it is coded as a “1,” otherwise, it is coded
as “0.”

Table 7 Identified model terms for the Breast Cancer dataset using
Algorithm 1

Model term Parameter

Bare nuclei 6.430

Constant −5.774

Uniformity of cell size 11.338



Neural Comput & Applic

Table 8 Comparison of accuracy performance between different
methods for modeling of the Breast Cancer dataset

Method Classification accuracy

Logistic-NARX 0.9716

Regression NARX 0.9787

Random forest 0.9787

Support vector machine 0.9681

K-nearest neighbors 0.9716

For this analysis, the first 80% of the dataset is used for
training, while the rest is used for testing. The frequency of
the eye state for each dataset is shown in Fig. 8. Similar to
the breast cancer scenario, the two eye states have roughly
the same frequency in the training set; however, this is not
the case in the testing set. Once more, this is not a significant
issue as the training phase can be performed with enough
information from both eye states, while the imbalanced test-
ing set can be used to check the performance of the trained
model.

Furthermore, two preprocessing steps are performed in
the training set. First of all, several outliers are detected
within the 14 variables. These were detected using data
visualization techniques (i.e., boxplots, histograms, and line
plots) and summary statistics on each of the variables. The
outliers are replaced with the mean value of the remain-
ing measurements for each variable. The eye state time
series, together with the 14 cleaned variables, are shown in
Fig. 9. Second, an attempt to train a model using the orig-
inal dataset was done. However, given the high variability
and dependency between the variables measured, the model
does not perform well enough. Because of this, a principal
component analysis (PCA) is performed in order to reduce

Fig. 7 Cross-validation accuracy plot obtained for the Breast Cancer
dataset using Algorithm 1

Fig. 8 Frequency of the eye state for the training and testing sets

the dimensionality of both the data and model space, and
in this study, the five most important principal components
(PCs) were used to represent the features of the original
data. The PC time series are shown in Fig. 10. Each PC is
treated to be a new input variable; lagged PC variables were
then used to built a logistic-NARX model. For this analysis,
the variables are transformed using scaling, centering, and
Box-Cox transformations. Therefore, the PCs summarize
the main variability of the dataset and simplify the iden-
tification process. The preprocessing parameters obtained
during the training phases are directly used on the testing set
in order to avoid the data snooping problem.

We apply the logistic-NARX modeling approach to this
dataset. The output variable is the eye state signal, and the
input variables are the five PCs computed in the prepro-
cessing phase. For this scenario, no lagged variables of the
output signal are used in order to ensure that the model
captures a pattern with the exogenous inputs only. The max-
imum lag for the inputs is chosen to be nu = 50, and the
nonlinear degree is � = 1 based on the results of previ-
ous works in [33, 59]. The search space is made up of 251
model terms. The maximum number of terms to look for is
chosen as nmax = 30, and 10 folds are used to compute
the cross-validation accuracy. Figure 11 shows the cross-
validation accuracy plot obtained after applying Algorithm
1 and it suggests that the most parsimonious model with
the best accuracy has nine model terms. These are shown in
Table 9.

In order to assess the performance of the resultant logis-
tic NARX model, a regression-like NARX model based on
the approach suggested in [7], a random forest with 500
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Fig. 9 Time series of all variables in the EEG Eye State dataset found at the UCI Machine Learning Repository [57]

trees, a support vector machine with a radial basis ker-
nel, and a k-nearest neighbors model are trained with the
same training set. Similar to the previous examples, two
cases are considered. One were the current input values are
used, i.e., without lags, and another were the same lagged
variables that were used for the logistic-NARX model are
employed. All models are compared using the testing set
and the OSA accuracy. The results are shown in Table 10.
In this case, our method has the best accuracy performance
and identifies the most significant lagged PCs that con-
tribute to the classification of the eye state. The models that
are trained without autoregressive inputs have a poor clas-
sification accuracy. This is improved when autoregressive
information is included. However, they do not achieve a
classification accuracy like the one obtained by the logistic-
NARX model.

6 Discussion

The proposed logistic-NARX algorithm shows a new
approach to deal with classification problems. The new
method has a similar performance with other classification
techniques when dealing with static data, but it outperforms
other methods when there is a dynamic component, and
lagged versions of input and output variables are required.
The proposed method is able to produce interpretable
models where the contribution of each model term can
be analyzed. In comparison with random forests, support
vector machines, and k-nearest neighbor approaches, the
new method can generate better or comparative perfor-
mance as illustrated in the case studies. Additionally, when
using random forests, it is possible to get the variable
importance, which may provide some insight about which
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Fig. 10 Time series of the five most important principal components

variables are contributing the most to explain the out-
put. However, this only ranks the variables and does not
explain how the variables are contributing to the mod-
eling process. The logistic-NARX model overcomes this
by providing variable importance and interpretability about
how the variables are interacting. Nevertheless, there are
some limitations to the proposed algorithm. First of all,
this work focuses on polynomial-like structures; therefore,
severe nonlinearities may not be modeled properly. To over-
come this, other structures can be considered (e.g., radial
basis functions, wavelets), and this will be considered in a
future extension of this work. Another issue is the selection
of the maximum lags for the output and input sequences
(ny and nu). This is an open research problem where sev-
eral interesting approaches have been proposed to tackle it

[33, 37]. It would become more difficult when the
lags become large, as the model search space has a
factorial growth which makes it intractable. Also, the
logistic-NARX approach may be affected by severe cor-
relation between the inputs, which results in poor per-
formance models. Some alternatives to overcome this
include the iterative OFR [25] and the ultra OFR [26].
Finally, the performance of the logistic-NARX model
can be affected if the data are not balanced (especially
when the output data are imbalanced). The scenario of
imbalanced data is typical in many real applications
where the minority class is dominated or buried by the
majority class. Several approaches are available for dealing
with imbalanced data problem, and readers are referred to
[32, 60] for details.
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Fig. 11 Cross-validation accuracy plot obtained for the EEG Eye
State dataset using Algorithm 1

Table 9 Identified model terms for the EEG Eye State dataset using
Algorithm 1

Model term Parameter

PC2 (k − 43) 0.1545

Constant 0.2123

PC3 (k − 50) 0.5776

PC1 (k − 43) −0.1384

PC2 (k − 1) −0.2593

PC2 (k − 38) 0.1766

PC2 (k − 50) 0.3606

PC3 (k − 1) −0.1214

PC2 (k − 32) 0.1536

Table 10 Comparison of accuracy performance between different
methods for modeling of the EEG Eye State dataset

Method Classification

accuracy

Logistic-NARX 0.7199

Regression NARX 0.6643

Random forest (without autoregressive inputs) 0.5475

Support vector machine (without autoregressive inputs) 0.6029

K-nearest neighbors (without autoregressive inputs) 0.5041

Random forest (with autoregressive inputs) 0.6365

Support vector machine (with autoregressive inputs) 0.6473

K-nearest neighbors (with autoregressive inputs) 0.5662

7 Conclusion

In this work, we developed a novel algorithm that com-
bines logistic regression with the NARX methodology. This
allows to tackle classification problems where the output
signal is a binary sequence and the regressors are continuous
lagged variables. Our approach can deal with the multi-
collinearity problem while producing models that predicts
binary outcomes. From the five case studies, the perfor-
mance of the proposed logistic-NARX models is preferable
to that of the other compared methods when dealing with
binary-label prediction, where it is sometimes highly desir-
able to know which input variables play an important role
individually and/or interactively in the classification pro-
cess. The results obtained are promising, and future research
may extend this method to multiclass problems.
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19. Székely GJ, Rizzo ML (2013) Energy statistics: A class of statis-
tics based on distances. J Stat Plan Infer 143(8):1249

20. Piroddi L, Spinelli W (2003) An identification algorithm for
polynomial NARX models based on simulation error minimiza-
tion. Int J Control 76(17):1767. doi:10.1080/00207170310001635
419

21. Ayala Solares J, Wei HL (2015) Nonlinear model structure detec-
tion and parameter estimation using a novel bagging method based
on distance correlation metric. Nonlinear Dynamics, pp 1–15.
doi:10.1007/s11071-015-2149-3

22. Wei HL, Lang Z, Billings SA (2008) Constructing an overall
dynamical model for a system with changing design parameter
properties. Int J Model Ident Control 5(2):93

23. Li P, Wei HL, Billings SA, Balikhin MA, Boynton R (2013)
Nonlinear model identification from multiple data sets using an
orthogonal forward search algorithm. J Comput Nonlinear Dyn
8(4):10

24. Li Y, Wei HL, Billings S, Sarrigiannis P (2015) Identification of
nonlinear time-varying systems using an online sliding-window
and common model structure selection (CMSS) approach with
applications to EEG. International Journal of Systems Science,
pp 1–11. doi:10.1080/00207721.2015.1014448

25. Guo Y, Guo L, Billings S, Wei HL (2015) An iterative orthog-
onal forward regression algorithm. Int J Syst Sci 46(5):776.
doi:10.1080/00207721.2014.981237

26. Guo Y, Guo LZ, Billings S, Wei HL (2015) Ultra-orthogonal
forward regression algorithms for the identification of non-linear

dynamic systems. Neurocomputing 173:715–723. http://www.
sciencedirect.com/science/article/pii/S0925231215011741

27. James G, Witten D, Hastie T, Tibshirani R (2013) An introduc-
tion to statistical learning with application in r, Springer Texts in
Statistics, vol 103. Springer

28. Harrell F (2015) Regression modeling strategies: with applica-
tions to linear models, logistic and ordinal regression and survival
analysis. Springer

29. Pallant J (2013) SPSS survival manual. McGraw-Hill Education,
UK

30. Breiman L (2001) Random forests. Mach Learn 45(1):5.
doi:10.1023/A%3A1010 933404324

31. Vapnik VN (1998) Statistical learning theory. Wiley
32. KuhnM, Johnson K (2013) Applied predictive modeling. Springer
33. Wei HL, Billings SA, Liu J (2004) Term and variable selection for

non-linear system identification. Int J Control 77(1):86
34. Rashid MT, Frasca M, Ali AA, Ali RS, Fortuna L, Xibilia

MG (2012) Nonlinear model identification for Artemia popula-
tion motion. Nonlinear Dyn 69(4):2237. doi:10.1007/s11071-012-
0422-2

35. Wickham H (2016) R for Data Science. Hadley Wickham, Garrett
Grolemund, O’Reilly, Canada
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