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a b s t r a c t 

In model identification, the existence of uncertainty normally generates negative impact on 

the accuracy and performance of the identified models, especially when the size of data 

used is rather small. With a small data set, least squares estimates are biased, the result- 

ing models may not be reliable for further analysis and future use. This study introduces 

a novel robust model structure selection method for model identification. The proposed 

method can successfully reduce the model structure uncertainty and therefore improve 

the model performances. Case studies on simulation data and real data are presented to 

illustrate how the proposed metric works for robust model identification. 
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1. Introduction 

The procedure of model identification includes several steps including data collection and processing, selection of model

representation, model structure detection and selection, model parameter estimation, and model validity test [25] . A wide

variety of model types have been developed for nonlinear input-output system identification, modelling and control, for

example, nonlinear autoregressive with exogenous inputs (NARMAX) model [15] , neural networks [13,16,20,26] , Bayesian

network [19] , fuzzy model [11,27,36,37,39] , wavelet models [5,8,31,38] and so on. Among these, the NARMAX model is one

of the most commonly used model types for many real-world applications including ecological systems [22] , environmental

systems [3] , space weather [1,10,34] , medicine [4] , societal [18] and neurophysiological [21] sciences, etc. 

Broadly speaking, data based modelling approaches can be categorized into two groups: parametric and nonparametric.

Nonparametric methods are those that do not make strong assumptions about the form of the mapping functions (that map

the model “input” variables to the model “output” variables). Most existing artificial neural networks are nonparametric

approaches. In [24] it is stated that “Nonparametric methods are good when you have a lot of data and no prior knowledge,

and when you don’t want to worry too much about choosing just the right features” (p.757). One of the advantages of neural

networks is that in general they can achieve relatively higher performances in dealing with complicated data modelling

problems defined in high dimensional space. However, the model structure of most neural networks is very complicated

and cannot be simply written down. In addition, neural networks models often involve a large number of variables and

take a long time for training. General neural networks models cannot provide a transparent model structure, where the

significance of individual variables and the role of their interactions are invisible. Moreover, the implementation of some

nonparametric approaches for example Bayesian networks normally would need a huge number of samples. In comparison

with neural networks models, parametric NARX models use a nonlinear polynomial structure and often only need a small
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number of effective model terms to describe the system. It can be achieved by selecting a number of most important model

terms by an orthogonal forward regression (OFR) algorithm [14,33] , so that it generally only requires a relatively small

number of input and output data points [6,30] . In many applications (e.g. [3,4] ,), where the main objective of the modelling

tasks is not only to predict future behavior, but also reveal and understand which model variables are most important and

how the candidate variables interactively affect the system behavior, parametric models are usually become a first choice. 

Under some specific conditions and assumptions, most existing model identification methods work well and can provide

sufficiently reliable models for most applications. However, in many cases where there is modelling uncertainty (e.g. in data,

model form and structure, parameters, noise level, etc.), the identified models may lack reliability and thus less useful. This

is particularly true when the available data set is small. This study focuses on parametric models and aims to answer the

following challenging question. Given a small set of experimental data of a system, how to build a model that best represents

the underlying system dynamics hidden in the data? Most data modelling approaches can generate good models that best

fit the data themselves, but the models may not be able to represent well the inherent dynamics of the original system

because of different kinds of uncertainties. For small data modelling problems, the difficulty of finding reliable models is

often exacerbated due to the small sample size of data. It is observed that for a small data modelling problem, small changes

in a few or even a single sample can cause a large effect on model estimation. Thus, another question that arises is: how to

reduce the model uncertainty (i.e. increase the model reliability) for small size data modelling problems? 

It is not straightforward, if not impossible, to induce a robust model from a small sample size data, no matter what

kind of system identification or data modelling algorithm are employed. In additional to noise and the size of samples,

other types of factors can also lead to model uncertainty. For example, a data based modelling approach may just simply

assumes a specific model type to represent the data but the specified model structure is completely different from the true

system model; some driven variables may be immeasurable or ignored. All this is embedded in the aphorism “all models are

wrong, but some are useful” [9] . In fact, for all system identification problems, model type selection and structure detection

is usually an instrumentally important task. For the same data based modelling problem, different types of models often

have different properties and performance, with different interpretation of the data. Even for the same model type, different

algorithms could lead to different final model representations. The reason is simple: when the true model is unknown, all

the identified models could be wrong because of uncertainty and the incompleteness of information. Effectively dealing

with uncertainty (model structure, parameter, prediction, etc.) has become an important topic in many research fields, for

example, soil changes [23] , carbon and water fluxes at the tree scale [17] . In all scientific research, it nearly always needs to

consider uncertainty, from various perspective such as, sources of uncertainty, techniques of quantifying uncertainty, decision

making under strong uncertainty conditions, etc. 

With the above observations, this study aims to develop a new approach to find a robust model structure to reduce un-

certainty in model identification especially when sample size is small. Based on a data resampling approach, combined with

an orthogonal forward regression (OFR) algorithm [14,33] , a robust model structure selection (RMSS) method is designed to

reduce model uncertainty and improve model performance. This is especially useful for the following two scenarios of data

based modelling problem: (i) modelling from multiple small sample size datasets (e.g. many datasets for a same system

but generated under different experimental conditions; (ii) modelling for a non-stationary system where although the key

system dynamics can be represented using a single model structure, different model parameters are needed to adaptively

reflect the change of system behaviors at different times. 

In summary, the main contribution of the work lies in the new robust common model structure detection method

for solving two challenging problems frequently encountered in practical system identification and data-driven modelling,

namely, (a) reliable model identification from small sample data, and (b) robust common model determination from several

or many experimental datasets. 

The reminder of this paper is organized as follows. In Section 2 , the classic nonlinear autoregressive moving average with

exogenous inputs (NARMAX) model and orthogonal forward regression (OFR) algorithm are briefly reviewed. In Section 3 , the

proposed robust model structure selection (RMSS) method is introduced. Section 4 presents case studies of both simulation

data and real data. The study is summarized in Section 5 . 

2. Overview of NARMAX model and OFR algorithm 

This study focuses on linear-in-the-parameters representation including NARMAX model. The OFR algorithm is used to

detect the significant model terms and establish parsimonious model structures. 

2.1. NARMAX model 

The nonlinear autoregressive moving average with exogenous inputs (NARMAX) model [15] was developed for black-box

system identification where the true model structure is assumed to be unknown. The general NARMAX model structure is:

y ( t ) = F [ y ( t − 1 ) , . . . , y ( t − n y ) , u ( t − 1 ) , . . . , u ( t − n u ) , e ( t − 1 ) , . . . , e ( t − n e ) ] (1) 

where y ( t ) and u ( t ) are systems output and input signals; e ( t ) is a noise sequence with zero-mean and finite variance. n y , n u ,

and n e are the maximum lags for the system output, input and noise. F [ · ] is some nonlinear function. Many of the traditional
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linear and nonlinear model type, for example, AR, ARM and NARX model can be treated as special cases of NARMAX model.

There are several advantages of NARX and NARMAX model: first, the model structure can be determined in a stepwise way

by selecting the significant model terms by an orthogonal forward regression (OFR) algorithm; second, the identification

procedure is not time consuming and easy to implement; third, the polynomial form of the model provides a transparent

and parsimonious representation of the system which is easy to understand and use. These advantages can be realized using

an OFR method, which can effectively and efficiently select model terms, from a huge number of candidate model terms. 

2.2. Term selection using OFR algorithm 

The classic OFR algorithm, firstly introduced in [14] , was originally developed as a subset selection method for nonlinear

modelling problems where the nonlinearity is unknown in advance and the desirable model terms cannot be specified. The

OFR method was proposed in solving such ‘black-box’ system identification problems. The basic idea behind this method is

to use an error reduction ratio (ERR) [14] index, to measure the significance of candidate model terms and generate a rank

according to the contribution made by each of the model terms to explaining the variation of the response variable. At each

step, one model term can be selected from the candidate sets according to their ERR ranking. After each term is selected,

it is removed from the bases and the bases are then transformed to new orthogonalized bases for the next terms selection

procedure. The OFR algorithm can be described as follows: 

2.2.1. Problem statement 

A polynomial NARX model can be written as the following linear-in-the-parameters form: 

y ( t ) = 

M ∑ 

m =1 

θm 

ϕ m 

( t ) + e ( t ) (2)

where ϕm 

( t ) are the model terms generated from the regressor vector ϑ(t) = [ y ( t − 1 ) , . . . , y ( t − n y ) , u ( t − 1 ) , . . . ,

u ( t − n u )] T , θm 

are the unknown parameters and M is the number of candidate model terms. 

Let y = [ y (1) , . . . , y ( N) ] T be the output vector of N sampled observations and δm 

= [ ϕ m 

(1) , . . . , ϕ m 

( N) ] T be the vec-

tor formed by the m th model term ( m = 1 , 2 , . . . , M ) . A dictionary of all the candidate model terms can be written as

D = { ϕ 1 , . . . , ϕ M 

} . And let D n = { ϕ l 1 
, . . . , ϕ l n } be a subset of n model terms, from the full set D , where { l 1 , . . . , l n } ∈

{ 1 , 2 , . . . , M } . Thus, the term selection problem for the (2) is to find a subset D n so that y can be well explained: 

y = 

n ∑ 

i =1 

θl i 
δl i 

+ e (3)

2.2.2. Model term selection 

The classic OFR method uses a simple and effective ERR index, to measure the contribution of each model term in

exampling the system. For the full dictionary D , the ERR index of each candidate model term can be calculated by: 

ER R 

( 1 ) [ i ] = 

( y T δi ) 
2 (

y T y 
)(

δT 
i 

δi 

) (4)

where i = 1 , 2 , . . . , M. The first selected model term can then be identified as: 

l 1 = arg max 
1 ≤i ≤M 

{
ER R 

( 1 ) [ i ] 
}

(5)

Then the 1st significant model term of the subset can be selected as ϕ l 1 
, and the 1st associated orthogonal variable can

be defined as q 1 = δl 1 
. After removal ϕ l 1 

from D , the dictionary D is then reduced to a sub-dictionary D M−1 , consisting of

M − 1 model candidates. At step s ( s ≥ 2), the M − s + 1 bases are first transformed into new group of orthogonalised base

[ q (s ) 
1 

, q (s ) 
2 

, . . . , q (s ) 
M−s +1 

] with orthogonlization transformation. 

q 

( s ) 
j 

= δ j −
s −1 ∑ 

r=1 

δT 
j 
q r 

q 

T 
r q r 

q r (6)

where q r ( r = 1 , 2 , . . . , s − 1 ) are orthogonal vectors, δ j ( j = 1 , 2 , . . . , M − s + 1 ) are the basis of unselected model terms

of subset D M−s +1 and q (s ) 
j 

( j = 1 , 2 , . . . , M − s + 1 ) are the new orthogonalised bases. The rest of the model terms can then

be identified step by step using the ERR index of orthogonalised subsets D M−s +1 : 

ER R 

( s ) [ j ] = 

(
y T q 

( s ) 
j 

)2 

(
y T y 

)(
q 

( s ) 
T 

j 
q 

( s ) 
j 

) (7)

l s = arg max 
{

ER R 

( 1 ) [ j ] 
}

(8)

1 ≤ j≤M−s +1 
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Table 1 

Variables of two datasets. 

x 1 x 2 x 3 y 

dataset 1 1 1 0 1 

0 1 1 2 

1 1 1 5 

1 0 0 4 

dataset 2 0 1 0 2 

1 1 1 1 

0 0 0 3 

1 0 0 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.3. Model size determination 

The selection procedure can be terminated when specific conditions are met. The number of model terms to be included

in the final model can be determined by several model selection criteria, for example, the Generalised Cross-Validation

(GCV) [8] , a modified Generalised Cross-Validation Criteria based on Mean-Square-Error (MSE) [22] , a modified ESR (Error

Signal Ratio) index [28] and the adjustable prediction error sum of squares (APRESS) [6] . In this study, the APRESS is used

to determine the number of model terms. It is given as: 

AP RESS ( n ) = 

(
N 

N − λn 

)2 

MSE ( n ) (9) 

where N is the number of observations, n is the number of selected model terms, λ is a small positive number and MSE ( n )

is the mean square error. The optimal number of model terms is often chosen as: 

n optimal = arg min 

1 ≤n ≤M 

{ AP RESS ( n ) } (10) 

The above procedure is referred to as forward regression with orthogonal least squares (FROLS) or simply orthogonal

forward regression (OFR) algorithm [7,14] . 

3. Robust model structure selection method 

Following the discussions in the previous section, the OFR method is used to select a small number of significant terms

to establish a best model structure. For many real modelling tasks, there are several commonly seen situations where the

OFR algorithm cannot be directly used to generate best models, for example: (i). the data are usually recorded from a series

of experiments under different experimental conditions, or the system itself is non-stationary and needs to be observed for

a long-time scale. In these scenarios, the model structure might be varying with time and/or with the change of external

environmental conditions. (ii). The true model structure of the system is unknown and cannot be well represented by any of

the candidate model terms in the dictionary. Thus, it is impossible to find a perfect model structure and there will always be

uncertainty of model structure. (iii). the data is corrupted with strong noises which makes the OFR estimation biased. The

bias could be extremely obvious when data size is small, since a small change of a single term can bring a huge difference

on the estimated model. Under these conditions, the OFR method may fail to find a best model structure that can well

represent the system. Therefore, the RMSS method is needed for capturing and reducing the model uncertainty and thus

improving the overall model predictive performance. 

In the following, a novel RMSS method is proposed. The basic idea of the new method is first illustrate using a simple

example, and the procedure of the method is then presented. 

3.1. Basic idea 

Consider a scenario where a total number of K datasets are available, all of which are generated from a same system

under some different conditions. The primary objective is to find a common model that best fits all the K datasets. The new

method uses a concept of overall mean absolute error (OMAE); it is defined as the average of K individual mean absolute

errors (MAE) which are calculated when a model (or a new model term is included in an existing model) to fit all the K

datasets. Consider two datasets (as shown in Table 1 ): 

Assuming that one and only one variable (among x 1 , x 2 , and x 3 ) is used to fit the two datasets, then which one can give

a minimum OMAE value? This can be done by calculating the individual MAE values one by one. For example, the individual

mean absolute error ε(1) 
1 

of the variable x (1) 
1 

for dataset 1 can be calculated as: 

ε( 1 ) 
1 

= 

1 

4 

∥∥y ( 1 ) − α( 1 ) 
1 

x ( 
1 ) 

1 

∥∥
1 

= 

1 

4 

∥∥∥∥∥y ( 1 ) − x ( 
1 ) 

T 

1 
y ( 1 ) 

x ( 
1 ) 

T 

1 
x ( 

1 ) 
1 

x ( 
1 ) 

1 

∥∥∥∥∥
1 

= 

1 

4 

∥∥∥∥∥∥∥
−2 . 3333 

2 . 0 0 0 0 

1 . 6 6 67 

0 . 6 6 67 

∥∥∥∥∥∥∥
= 1 . 6 6 67 (11) 
1 
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Table 2 

MAE and OMAE values of x1, x2, and x3. 

Term MAE (dataset 1) MAE (dataset 2) OMAE 

x 1 1.6667 1.2500 1.4583 

x 2 2.1667 1.0833 1.6250 

x 3 2.0 0 0 0 1.50 0 0 1.7500 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MAEs for x 2 and x 3 can be calculated in a similar way for datasets 1. Similar calculations can be performed to dataset

2. There is a total number of 6 individual MAEs. The OMAEs can be calculated, as shown in Table 2 . As the OMAE value of

x 1 is smaller than the other two, x 1 should be the best choice for fitting the two datasets. Note that once the first model

term is determined, a second model term can be chosen to join the first one, and then a third one, and on. The detailed

descriptions of the general procedure of the RMSS method is given in next section. 

3.2. Robust model structure selection method 

The RMSS method can be summarized into several steps: 

3.2.1. Resampling process (for small size data) 

Assume that the original data can be described by a N × M matrix d as follows: 

d = 

[
δ1 , . . . , δM 

]
= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

δ1 ( 1 ) δ2 ( 1 ) δM 

( 1 ) 
· · ·

δ1 ( 2 ) δ2 ( 2 ) δM 

( 2 ) 
. . . 

. . . 
. . . 

δ1 ( N ) δ2 ( N ) · · · δM 

( N ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

(12)

where { δ1 , . . . , δM 

} is M candidate basis vectors (generated from M candidate model terms) and N is the number of data

points. The original dataset can be regrouped to form K sub-datasets through some resampling methods e.g. random sam-

pling or bootstrap (see [29,32] and the references therein). The k th sub-dataset can be described by a N 

′ × M matrix: 

d 

( k ) = 

[ 
δ( k ) 

1 
, . . . , δ( k ) 

M 

] 
= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

δ( k ) 
1 ( 1 ) δ( k ) 

2 ( 1 ) δ( k ) 
M 

( 1 ) 
· · ·

δ( k ) 
1 ( 2 ) δ( k ) 

2 ( 2 ) δ( k ) 
M 

( 2 ) 
. . . 

. . . 
. . . 

δ( k ) 
1 

(
N 

′ ) δ( k ) 
2 

(
N 

′ ) · · · δ( k ) 
M 

(
N 

′ )

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(13)

where the associated candidate basis vectors become { δ(k ) 
1 

, . . . , δ(k ) 
M 

} and N 

′ is the number of data points in each sub-

dataset. 

Remark 1. For small size data, the original dataset is resampled by removing one of the data points each time until all

the data points have been picked out once (leaving one sample out), so that N 

′ = N − 1 and K = N. Thus, the uncertainty

brought by removing or adding a single data point can be reduced by finding a single common model for the K sub-datasets.

The resampling process is used for the situations when the data size is small and the effect of a single data point can be

significant for determining the final model structure and model parameters. 

3.2.2. The OMAEs of model terms for k sub-datasets 

To find a robust model structure that best fits all the K sub-datasets, an MAE matrix is calculated using the data from all

the K sub-datasets. In the first step search, the MAE matrix is defined as: 

�( 1 ) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ε( 1 ) 
1 

ε( 1 ) 
2 

ε( 1 ) 
M 

· · ·
ε( 2 ) 

1 
ε( 2 ) 

2 
ε( 2 ) 

M 

. . . 
. . . 

. . . 

ε( K ) 
1 

ε( K ) 
2 

· · · ε( K ) 
M 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

(14)

where ε(k ) 
m 

( m = 1 , 2 , . . . , M and k = 1 , 2 , . . . , K ) is the individual MAE value when the m th candidate model term is

used to approximate output y ( k ) in the k th sub-dataset. It is calculated as: 

ε( k ) 
m 

= 

1 

N 

′ 
∥∥∥y ( k ) − α( k ) 

m 

δ( k ) 
m 

∥∥∥ (15)

1 
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where α(k ) 
m 

is the parameter. Then, the OMAE associated with the m th candidate model term which is used to represent all

the K sub-datasets is defined as: 

ε̄m 

= 

1 

K 

(
ε( 1 ) 

m 

+ ε( 2 ) 
m 

+ . . . + ε( K ) 
m 

)
(16) 

Remark 2. In addition to the OMAE, there are several other metrics for measuring the overall predicted error of each model

term, for example: 

φ1 

(
y, ̂  y 

)
= 

1 

N 

N ∑ 

t=1 

| y t − ̂ y t | (17) 

φ2 

(
y, ̂  y 

)
= 

1 

N 

N ∑ 

t=1 

( y t − ̂ y t ) 
2 

(18) 

φ3 

(
y, ̂  y 

)
= 

∑ N 
t=1 | y t − ̂ y t | ∑ N 

t=1 | y t | + 

∑ N 
t=1 | ̂  y t | 

(19) 

φ4 

(
y, ̂  y 

)
= 

√ 

1 
N 

∑ N 
t=1 | y t − ̂ y t | √ 

1 
N 

∑ N 
t=1 | y t | + 

√ 

1 
N 

∑ N 
t=1 | ̂  y t | 

(20) 

where y and ˆ y are the observed and predicted system outputs and N is the number of data points. As will be illustrated

later (e.g. Table 7 in Section 4.2) that φ1 ( y , ̂ y ) (MAE) is a better choice. It was argued in some studies that MAE is a better

metric for model evaluation [12] . 

3.2.3. OMAE-based term selection and parameter estimation 

Define: 

l 1 = arg min 

1 ≤m ≤M 

{ ̄εm 

} (21) 

Then the 1st significant model terms can be selected as ϕ l 1 
. After removal of the basis δ(k ) 

l 1 
from the k th sub-dataset

( k = 1 , 2 , . . . , K ) , the dictionaries of all the K sub-datasets are then reduced and consists of M − 1 model candidates.

Similar to that in the conventional OFR algorithm, at step s ( s ≥ 2), the K dictionaries consist of M − s + 1 candidate model

terms. The K bases are all transformed into a new group of K orthogonalized bases. The orthogonal transformation can be

implemented using (6) for each single sub-dataset. The MAE matrix at step s can be calculated using the new group of K

bases, and the MAE matrix is: 

�( s ) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ε( 1 ) 
1 

ε( 1 ) 
2 

ε( 1 ) 
M−s +1 

· · ·
ε( 2 ) 

1 
ε( 2 ) 

2 
ε( 2 ) 

M−s +1 

. . . 
. . . 

. . . 

ε( K ) 
1 

ε( K ) 
2 

· · · ε( K ) 
M−s +1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

(22) 

The OMAEs of all the candidate terms can then be calculated and the s th robust model term can be selected to be ϕ l s ,

with: 

l s = arg min 

1 ≤m ≤M−s +1 
{ ̄εm 

} (23) 

Repeating the recursive process, a number of model terms can be selected to form a linear-in-parameters robust model

structure. Similar to OFR algorithm, the selection procedure can be terminated when specific conditions are met. 

Assume that a total of n model terms are selected, and for the k th sub-dataset let the output y ( k ) be represented by the

n selected model terms as: 

y ( k ) = θ ( k ) 
l 1 

δ( k ) 
l 1 

+ θ ( k ) 
l 2 

δ( k ) 
l 2 

+ . . . + θ ( k ) 
l n 

δ( k ) 
l n 

(24) 
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Following [14,15] , the model parameters θl 1 

(k ) 
, θl 2 

(k ) 
, . . . , θl n 

(k ) 
can be calculated through an iterative procedure. Ac-

cording to the orthogonalization procedure [14,15] , here we define K unity upper triangular matrices first: 

A 

( k ) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

a ( 
k ) 

11 
a ( 

k ) 
12 

a ( 
k ) 

1 n 

· · ·
0 a ( 

k ) 
22 

a ( 
k ) 

2 n 
. . . 

. . . 
. . . 

0 0 · · · a ( 
k ) 

nn 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

(25)

where a (k ) 
11 

= a (k ) 
22 

= . . . = a (k ) 
nn = 1 . 

From the orthogonalization procedure, the elements of A 

( k ) can be calculated as: 

a ( 
k ) 

r j 
= 

(
q 

( k ) 
r 

)T 

δl j 

( k ) 

(
q 

( k ) 
r 

)T 

q r 
( k ) 

( r = 1 , 2 , . . . , j − 1 and j = 2 , 3 , . . . n ) (26)

g ( 
k ) 

j 
= 

( y ( k ) ) 
T 

q j 
( k ) (

q 

( k ) 
j 

)T 

q j 
( k ) 

( j = 1 , 2 , . . . , n ) (27)

The estimates of K groups of parameter vector θ(k ) = [ θ (k ) 
l 1 

, θ (k ) 
l 2 

, . . . , θ (k ) 
l n 

] can then be calculat ed from the triangular

equations A 

(k ) θ(k ) = g (k ) . The final model parameter estimation is chosen to be the average of the K parameter estimates,

with: 

θl j 
= 

1 

K 

K ∑ 

i =1 

θ ( i ) 
l j 

( j = 1 , 2 , . . . , n ) (28)

Detailed derivation and explanation for the mechanism of the above calculations (25) –(28) can be found in [14,15] . 

Remark 3. The proposed RMSS method can be summarized into several steps: (1). calculate the OMAE of each candidate

model term; (2). select the model term according to the OMAEs; (3). remove the selected terms in the dictionary and

transformed the rest of bases to form new orthogonalized bases; (4) repeat the first 3 steps until a specific model selection

criterion is met. (5). parameter estimation. The whole procedure can be described by a diagram as shown in Fig. 1 . 

Remark 4. Note that different from traditional L2-norm based algorithms, e.g. the orthogonal projection pursuit (OPP) al-

gorithm [28] that can be proven to converge, the proof of the convergence of the proposed RMSS method is not straight-

forward. In this study, the focus is on choosing a set of most powerful model terms from a given pool consisting of a large

number of candidate model terms, through an iterative manner, one term at each search step, until a model with an ap-

propriate model terms that gives satisfactory fit to the data is obtained. Instead of strictly prove the convergence of the

proposed method, we demonstrate the overall performance of the new method through numerical case studies which are

presented in the next section. 

4. Case studies 

Two simulation examples are presented to test the efficiency of the RMSS method and to show under which conditions

the proposed method can improve the model performance. The first example aims to test if the proposed method can pick

out the correct model terms when data are noise free. The second example investigates the performance of the proposed

method for modelling problems with different levels of uncertainty (noise). Finally, a case study on Kp index forecast is

carried out to demonstrate the power of the new method solving a real-world problem. For the convenience of comparative

analysis, the model identified by OFR method will be referred as ‘regular model’ and the model identified by RMSS method

will be referred as ‘robust model’ . 

4.1. Example 1- noise free data modelling 

It is known that most existing model structure selection methods are able to provide sufficiently reliable model, when

data are clean (i.e. not corrupted with noise). In the following it will show that both the RMSS method and classic OFR

method can generate perfect model structure from noise free data. Consider a nonlinear system: 

y ( t ) = 0 . 5y ( t − 1 ) + 0 . 8 u ( t − 2 ) + u 

2 ( t − 1 ) − 0 . 05 y 2 ( t − 2 ) + 0 . 5 (29)
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Fig. 1. Robust model structure selection (RMSS) method. 

Table 3 

Selected terms by classic OFR method. 

No. Term ERR(100%) Parameter 

1 y(t-1) 78.7770 0.50 0 0 

2 u(t-2) 10.6233 0.80 0 0 

3 u(t-1) × u(t-1) 8.8996 1.0 0 0 0 

4 constant 1.3601 0.50 0 0 

5 y(t-2) × y(t-2) 0.3401 −0.0500 

 

 

 

 

 

 

 

 

 

 

 

 

where the input u(t) was assumed to be uniformly distributed on [ −1 , 1 ] . A total number of 100 input-output data points

were generated. The first 70 points were used for model estimation and the remaining 30 points were used for performance

test. The following candidate variable vector was used for model construction: 

ϑ ( t ) = [ y ( t − 1 ) , y ( t − 2 ) , u ( t − 1 ) , u ( t − 2 ) ] T (30) 

The initial full model was chosen to be a polynomial form with nonlinear degree of l = 3 . Firstly, the OFR method was

applied to find the significant model terms according to the ERR ranking. The APRESS values suggest that a model of 5

terms can be a good choice. Not surprisingly, all the model terms are correctly selected and the parameters are estimated

correctly. The selected terms and the associated ERR values are shown in Table 3 . The RMSS method was also applied to the

same train data, to select significant terms according to their OMAEs relating to a total number of 70 sub-datasets generated

through the resampling process. As a result, the RMSS method selected exactly the same model terms as the OFR method.

The associated OMAEs are shown in Table 4 . 

Note that the OFR and RMSS methods employ two different indicators (i.e., the ERR index and OMAEs to measure the

contribution of each model term to explaining the variance of response variable. During the process of OFR, the SERR (sum

of ERR values) is increasing to the maximum value of 100%, which indicates that 100% of the variance of response variable

can be explained by the selected terms. For the RMSS method, the OMAE is decreasing to 0, which means that there is no
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Table 4 

Selected terms by RMSS method. 

No. Term OMAE Parameter 

1 y(t-1) 0.5639 0.50 0 0 

2 u(t-2) 0.3831 0.80 0 0 

3 u(t-1) × u(t-1) 0.1610 1.0 0 0 0 

4 constant 0.0652 0.50 0 0 

5 y(t-2) × y(t-2) 0.0 0 0 0 −0.0500 

Fig. 2. SERR and OMAE versus the number of iteration of term selection. 

Fig. 3. Statistics prediction performance of regular model and robust model versus the model complexity. 

 

 

 

 

 

 

 

 

 

 

 

error in the identified model. The variation of SERR and OMAE of the OFR and RMSS are displayed in Fig. 2 . It can be easily

seen that the model with 5 terms is perfect and can describe 100% of the variance of the response variable. The variation

of the correlation coefficient and prediction efficiency, with the inclusion of model terms, one by one, is shown in Fig. 3 . 

4.2. Example 2- data with additive white noise 

Now consider a nonlinear system: 

y ( t ) = −u ( t − 1 ) 
√ 

| y ( t − 1 ) | + 0 . 4 u 

2 ( t − 1 ) + 0 . 8 u ( t − 2 ) u ( t − 1 ) + ξ ( t ) (31)

where the input u ( t ) was assumed to be uniformly distributed on [ −1 , 1 ] and ξ ( t ) is a white noise with zero mean and

finite variation. With five different levels of signal to noise ratio, namely, noise-free and SNR = 50, 15, 10, 0 dB, respectively,

the system was simulated five times. For each SNR case, a total number of 100 input-output data points were generated.

The first 70 points were used for model estimation and the remaining 30 points were used for performance test. The initial

full model was chosen to be a polynomial form with maximum time lags of n y = n u = 2 and nonlinear degree of l = 3 . Note

that the model term 

√ | y ( t − 1 ) | was not included in the specific library of candidate model terms. As a consequence, it is

impossible to identify a ‘true’ model structure that perfectly represents every single component of the system. However, it

is possible to use both the OFR and the RMSS method to find model that can well represent the simulated data. In what
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Table 5 

Selected terms by OFR and RMSS method. 

SNR No. OFR method RMSS method 

noise free 1 u(t-2) × u(t-2) u(t-2) × u(t-2) 

2 u(t-1) u(t-1) 

3 u(t-1) × u(t-1) × y(t-2) u(t-1) × u(t-1) × y(t-2) 

4 u(t-1) × u(t-2) × u(t-2) u(t-1) × u(t-2) × u(t-2) 

5 u(t-1) × u(t-2) u(t-1) × u(t-2) 

6 u(t-1) × u(t-2) × y(t-1) u(t-1) × u(t-2) × y(t-1) 

7 u(t-2) × y(t-1) y(t-1) × y(t-2) 

50db 1 u(t-2) × u(t-2) u(t-2) × u(t-2) 

2 u(t-1) u(t-1) 

3 u(t-1) × u(t-1) × y(t-2) u(t-1) × u(t-1) × y(t-2) 

4 u(t-1) × u(t-2) × u(t-2) u(t-1) × u(t-2) × u(t-2) 

5 u(t-1) × u(t-2) u(t-1) × 1(t-2) 

6 u(t-1) × u(t-2) × y(t-1) u(t-1) × u(t-2) × y(t-1) 

7 u(t-2) × y(t-1) y(t-1) 

15db 1 u(t-2) × u(t-2) u(t-2) × u(t-2) 

2 u(t-1) u(t-1) 

3 u(t-1) × u(t-1) × y(t-2) u(t-1) × u(t-1) × y(t-2) 

4 u(t-1) × u(t-2) × u(t-2) u(t-1) × u(t-2) × u(t-2) 

5 u(t-1) × u(t-2) u(t-1) × u(t-2) 

6 u(t-1) × u(t-2) × y(t-1) u(t-1) × u(t-2) × y(t-1) 

7 u(t-1) × u(t-2) × y(t-2) u(t-1) × u(t-2) × y(t-2) 

8 u(t-2) × y(t-1) u(t-1) × u(t-1) 

10db 1 u(t-2) × u(t-2) u(t-2) × u(t-2) 

2 u(t-1) u(t-1) 

3 u(t-1) × u(t-1) × y(t-2) u(t-1) × u(t-1) × y(t-2) 

4 u(t-1) × u(t-2) u(t-1) × u(t-2) 

5 u(t-1) × u(t-2) × y(t-1) u(t-1) × u(t-2) × y(t-1) 

6 y(t-1) × y(t-2) u(t-2) × y(t-2) 

7 y(t-1) × y(t-2) × y(t-2) u(t-1) × u(t-1) × u(t-2) 

8 u(t-1) × u(t-2) × u(t-2) y(t-2) × y(t-2) × y(t-2) 

9 u(t-1) × u(t-1) × u(t-2) u(t-1) × u(t-2) × y(t-2) 

0db 1 u(t-2) × u(t-2) u(t-2) × u(t-2) 

2 u(t-1) u(t-1) 

3 u(t-2) × u(t-2) × y(t-2) u(t-2) × u(t-2) × y(t-2) 

4 u(t-1) × u(t-1) × y(t-1) y(t-1) × y(t-1) 

5 u(t-1) × u(t-2) u(t-2) × y(t-2) 

6 u(t-1) × u(t-1) u(t-2) × u(t-2) × u(t-2) 

7 y(t-1) × y(t-1) u(t-2) × y(t-2) × y(t-2) 

8 y(t-1) × y(t-2) y(t-1) × y(t-1) × y(t-1) 

9 y(t-1) × y(t-1) × y(t-1) u(t-1) × u(t-1) × y(t-2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

follows, it presents analysis and discussions on whether the RMSS methods can find satisfactory models with good predictive

performance, under different level of noise. 

Both the OFR and RMSS methods were applied to the simulated data with different levels of noises (noise-free, SNR = 50,

15, 10, 0 dB). The model complexity was determined by the APRESS metric. The selected model terms by the two methods

are shown in Table 5 . It can be observed that for most cases, the two methods select the same model terms for the first few

steps. This is reasonable because these terms are the most significant terms and make major contribution to explaining the

variance of system output and leaving one sample out (this scheme is used in RMSS method but not in OFR) does not affect

the order of the selected terms. However, the two methods start to select different model terms after a few steps. These

model terms give smaller contributions to explaining the variance in output signal, and a small change of single sample

might affect result of selection of these terms. In other words, the less significant model terms are more sensitive to the

effect of noise. 

As mentioned earlier, the classic OFR method uses ERR index as measure to select model terms; the measure is defined

as how much (in percentage) of the variance in the response signal can be explained by a newly included model term.

The RMSS method uses OMAE instead, which is a measure of the averaged prediction error in relation to a great number

(say K ) of models estimated from K sub-datasets generated from the original data through a resampling process. Therefore,

the resulting robust model should provide better overall predictive performances than the regular model. The performance

statistics of the regular and robust models are given in Table 6 . The results show that with the decrease in SNR values, the

performance of the models identified by both the OFR method and the robust method decreases, due to the increase of

uncertainty. It should be stressed that even for the noise-free case, both of the two methods fail to detect the true model

structure, because the model component u ( t − 1 ) 
√ | y ( t − 1 ) | is actually not in the pre-defined library of candidate model

terms. 
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Table 6 

Performance statistics of the regular model, robust model, lasso algorithm and neutral networks under different noises. 

SNR Level performance statistic regular NARX model robust NARX model lasso algorithm neural network a 

noise-free correlation coefficient 0.9365 0.9497 0.9335 0.9070 

predicted efficiency 0.8534 0.8754 0.8573 / 

50 dB correlation coefficient 0.9374 0.9463 0.9343 0.9273 

predicted efficiency 0.8560 0.8721 0.8587 / 

15 dB correlation coefficient 0.9117 0.9208 0.9114 0.8292 

predicted efficiency 0.7899 0.8135 0.7808 / 

10 dB correlation coefficient 0.8339 0.8758 0.8550 0.7712 

predicted efficiency 0.6219 0.7366 0.7025 / 

0 dB correlation coefficient 0.3780 0.4311 0.4931 0.3740 

predicted efficiency 0.0426 0.1846 0.2221 / 

a The number of layers is 10 and the training algorithm is Levenberg–Marquardt. The algorithm was run for 10 times and 

the averaged correlation coefficient is recorded. 

Fig. 4. One-step-ahead (OSA) predictions of robust model and regular model (noise free). 

Fig. 5. One-step-ahead (OSA) predictions of robust model and regular model (SNR is 15 dB). 

Fig. 6. One-step-ahead (OSA) predictions of robust model and regular model (SNR is 10 dB). 

 

 

 

 

 

 

Comparing the performance statistics of the regular and robust NARX models given, it is clear that the robust models

outperform the regular models in all the cases. In addition, the improvement of the robust models is significant when SNR

is quite low say at 10 dB and 0 dB. Fig. 4 –6 show the model prediction of the regular and robust models for the three cases:

noise-free and SNR = 15 dB and 0 dB, respectively. As can be seen from the figures, the differences of predicted and observed

output become more significant with the increase of noise level. It can be noted in Fig. 6 that there are some extremely

large values in predicted output from the regular model, and the robust model is more conservative in prediction, where

the amplitudes of the predicted values are in general smaller than that of the classical model but closer to the true values. 
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Table 7 

Comparison of the performances of robust models identified based 

on different measures. 

Measures φ1 φ2 φ3 φ4 

Correlation Coefficient 0.9208 0.9202 0.8667 0.8667 

Predicted Efficiency 0.8135 0.8059 0.7018 0.7018 

Table 8 

Kp index and solar wind variables. 

Name Model variable Description 

Kp y Kp index 

V u 1 solar wind speed/velocity (flow speed) [km/s] 

Bs u 2 southward interplanetary magnetic field 

p u 3 solar wind pressure (flow pressure) [nPa] 

n u 4 solar wind density (proton density) [n/cc] 

VBs u 5 V × Bs/10 0 0 √ 

p u 6 square root of p 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We also compared the performances of proposed RMSS method with other two nonlinear identification methods: lasso

and neural networks. Lasso aims to the degree of the freedom of a given model structure by shrinking the coefficients of

unnecessary model terms to zero. The lasso method can be easily adapted to many application scenarios where the desired

response signal is assumed to be of a sparse representation of a set of independent signals (predictors). However, lasso

could fail to produce stable subset selection results when the predictors are highly correlated. The performances of the two

methods are evaluated based on the models with the same number of model terms. From the results in Table 6 , the robust

NARX model outperforms the lasso method in most of the cases (noise-free, SNR = 50, 15, 10 dB). This is because the orthog-

onal forward regression (OFR) algorithm used in RMSS can effectively solve sever correlation and ill-conditioning problems

[30,33] . Regarding all the five cases, the performances of the neural network models are lower than those of the other two

methods. This might be because that the size of the data is very small, and that the power of neural networks is cannot be

fully exploited for this small size data modelling problem. More importantly, the proposed RMSS method has the following

superiorities: (i) The procedure is easy to implement and not time-consuming; (ii) the identified model clearly indicates the

information of the most important model terms; (iii) the identified model provides a transparent and parsimonious linear-

in-the-parameters representation, which can be easily generalized to new data. It is worth mentioning that in this example,

all the robust models were built using only 70 data points, which is quite small. This means the proposed RMSS method

may promise an effective data driven modelling approach for nonlinear systems, especially for small size data with strong

uncertainty. Overall, these results show the clear advantage of the proposed RMSS method in nonlinear model identification.

In addition, for the case of SNR = 15 dB, three extra robust models are obtained based on the other three different mea-

sures defined in (18) –(20) , respectively. The performance statistics of all the four models are given in Table 7 and it turns

out that the robust model selected by OMAE over performs the other three models. 

4.3. Example 3- Kp index forecasting 

Magnetic disturbance can affect many equipment and systems on or nearby earth, for example, navigation systems, com-

munication systems, satellites, and power grid, etc. They can be paralyzed and unreliable during these severe magnetic

situations. In order to understand and forecast the geomagnetic activity, the Kp (planetarische Kennziffer) index was first

introduced by Bartels [2] . The value of Kp index ranges from 0 (very quiet) to 9 (very disturbed) in 28 discrete steps, re-

sulting values of 0, 0 + , 1-, 1, 1 + ,2-, 2, 2 + , …, 9 [35] . The Kp index has been recorded and updated since last century

and become an important dataset to study space weather. The correlation between Kp index and solar wind parameters has

been discovered by many researches. Normally, the solar wind variables are treated as the model inputs and Kp index is

treated as the model output. A full description of the solar wind variables and derived variables is summarized in Table 8 . 

The Kp index was sampled every 3 h and the solar wind variables were sampled every 1 h It should be noted that this

study aims to build the models using robust method to predict Kp index 3 h ahead. Therefore, the unit of time lags of

both input and output is 3 h. For example, y ( t − 2 ) is the Kp index recorded 6 h before y ( t ) and u 4 (t − 1 ) is the solar wind

speed recorded 3 h before u 4 ( t ). A total number of 150 input-output data points of the 2011 are selected for the case study.

The maximum time lags are chosen as n u = 2 and the nonlinear degree is 2. The first 100 samples are used for training

and the remaining 50 samples are used for testing. The model is selected using only input lag variables, without using

autoregressive variables. The first 4 model terms selected by OFR method and RMSS method are shown in the following

Table 9 and Table 10 . 

The performance statistics of the two models are given in Table 11 and Fig. 7 presents comparisons between the model

outputs and the associated measurements. Clearly, the overall performance of the robust model is better than the regular

model and that produced by the lasso algorithm. The performance of the neural network model is slightly better than the
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Table 9 

Selected terms by OFR method for Kp model. 

No Term ERR(100%) Parameter 

1 u 6 (t-1) 79.6551 7.7057e + 00 

2 u 2 (t-1) × u 2 (t-1) 5.3507 4.0605e + 02 

3 u 1 (t-1) 2.5907 2.3494e + 00 

4 u 2 (t-2) 0.3058 7.4787e + 00 

Table 10 

Selected terms by RMSS method For Kp model. 

No Term OMAEs Parameter 

1 u 6 (t-1) 0.85592 6.4929e + 00 

2 u 2 (t-1) 0.74081 5.0490e + 01 

3 u 1 (t-1) × u 6 (t-2) 0.68803 2.0516e + 01 

4 u 5 (t-1) 0.65544 −8.2486e + 04 

Table 11 

Performance statistics of the regular model and robust model on Kp forecast. 

Performance Statistics regular model robust model lasso neural networks a 

Correlation Coefficient 0.7132 0.8056 0.6109 0.8368 

Predicted Efficiency 0.2927 0.6304 0.3202 / 

Normalized Root Mean Square Error 0.2449 0.1750 0.3506 / 

a The number of layers is 10 and the training algorithm is Levenberg–Marquardt. The algorithm was run 

for 10 times and the averaged correlation coefficient is recorded. 

Fig. 7. One-step-ahead (OSA) predictions of robust model and regular model for Kp index. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

robust NARX model. However, it is worth noting that the robust NARX model uses a much less number of model terms

to provide a transparent and parsimonious representation, which is easy to interpret and use. Although the correlation

between the measurements and the corresponding prediction of the neural network model is higher, the model itself is

very complicated and difficult to write down. In contrast, the RMSS method and NARX model provide a transparent and

parsimonious representation, which is simple where all the interactive relation among variables is clear. In general, the RMSS

method achieves a good trade-off between model complexity and model performance. Overall, the robust NARX model can

be a good choice for Kp index predictions. 

5. Conclusion 

This article focuses on improving model identification methods from small size data. When the size of data is small

or data is corrupted with noises, there is large uncertainty of model structure and parameter. These conditions can bring

a negative effect on the model structure selection process of the classic OFR method. In this study, the RMSS method is

proposed to enhance the classic OFR algorithm by selecting the robust significant model terms according to the OMAEs

of resampled sub-datasets. The new method is tested on two simulation examples and a real data application. The results

suggest that the new method can improve the prediction performance of modelling problems, especially when the data size

is small and there are strong noises and unknown system components. The advantage of this robust model is that it can

better capture the inherent dynamics of the whole dataset and thus can be well generalized to new data. Thus, the new

method can be applied for small sample size and multiple datasets problems. 

This paper does not analyse model uncertainty (e.g. the uncertainty existing in both model structure and model parame-

ters) and its effect on model generalization performance. Inspired by the concepts and ideas proposed for fuzzy and neural
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network modelling techniques (e.g. [11,26,27,37,39] ,), one of our future research directions would be focusing on quantitative

analysis of model uncertainty. 
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