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Why are we interested In low energy
electrons (< 200 keV) In the Inner magnetosphere?

» Surface charging by electrons with < 100 keV can cause significant damage
and spacecraft anomalies.

» The distribution of low energy electrons, the seed population (10 to few
hundreds of keV), is critically important for radiation belt dynamics.

» Chorus emissions (intense whistler mode waves) excited in the low-density
region outside the plasmapause are associated with the injection of keV plasma
sheet electrons into the inner magnetosphere.

» The electron flux at the keV energies is largely determined by convective and
substorm-associated electric fields and varies significantly with geomagnetic
activity driven by the solar wind — variations on time scales of minutes!

No averaging over an hour/day/orbit!



It Is challenging to nowcast and forecast low
energy electrons

Surface charging events vs. geomagnetic conditions

Surface charging, HFAE and LFHE events

| times: tables 6-8 from Mateo-velez et al. Severe geostationary enviroments..., J. Spacecraft and Rockets |

It is NOT necessary tohave even a modera
storm for significant surface charging ever
to happen

12

10F

[es]
T

The keV electron flux is largely determined
by convective and substorm-associated
electric fields and varies significantly

with geomagnetic activity — variations on
time scales of minutes! o
No averaging over an hour/day/orbit!
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Starm -initial Starm -main Storm -recovery Substorms -intense Substorms

Mateo Vélez et al., Severe geostationary
environments: from flight data to numerical
estimation of spacecraft surface charging,
Journal of Spacecraft and Rockets,
submitted, 2015

Correct models for electromagnetic fields,
boundary conditions, losses are
extremely hard to develop
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e- flux, cm™2ssreV

e- flux, cm™2 s sreV

5-50 keV electrons during quiet event

November 25, 2011

The data: AMC 12 geostationary satellite,

L 44 CEASE-II (Compact Environmental
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R T R Electrostatic Analyzer (ESA) for measuring

240 - low energy electron fluxes in 10 channels,
= 160 5-50 keV.
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- Flux increases are related to
AE peaks only (less than 200 nT,
small, isolated substorms)

- The lower the energy,
the large the flux

- Electrons of different channels
behaves differently:

- 1st peak (AE=200 nT) at midnight
seen for energies > 11 keV

- 2nd peak (AE=120 nT) at dawn,
increase in all energies

Not a unique case



e- flux, 1{cm"2 s sreV)

Similar increase in electron fluxes during
AE =400 nT and AE=1200 nT

February 28 - March 3, 2013

Small, CIR-driven storm with
Dst of 75 nT,

IMF Bz of -5 -10 nT,

Vsw from 350 to 650 km/s,
Psw peak at 8 nPa,

AE peaks of 800-1200 nT

el thasVe

ST AMC12 electron data

r T~ peaks in both 15-50 keV and
5-15 keV electron fluxes show

correlation with AE

——TT11 - 2 orders of magnitude increase

- all energies increase at midnight,

' "oy when AE is only 200 nT
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39.7-50.7 keV 31.1-39.7 keV 24.3-31.1 keV Log(flux)

log(FLUXO) log(FLUX1) log(FLUX2)

6.3026
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GOES 13 MAGED electron fluxes (MLT, AE)

AE index, nT
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No distinct dependence of electron fluxes on AE strength
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Inner Magnetosphere Particle Transport
and Acceleration Model (IMPTAM) for

low energy electrons
(Ganushkina et al., 2013, 2014, 2015)

¢ traces electrons with arbitrary pitch angles from the plasma sheet to the inner L-shell
regions with energies up to 300 keV in time-dependent magnetic and electric fields

¢ traces a distribution of particles in the drift approximation under the conservation
of the 1st and 2" adiabatic invariants. Liouville theorem is used to gain information
of the entire distribution function

¢ for the obtained distribution function, we apply radial diffusion by solving the
radial diffusion equation

¢ electron losses: convection outflow and pitch angle diffusion by the electron lifetimes

¢ advantage of IMPTAM: can utilize any magnetic or electric field model, including
self-consistent magnetic field and substorm-associated electromagnetic fields.

Run online in real time: http://fp7-spacecast.eu, imptam.fmi.fi,
http://csem.engin.umich.edu/tools/imptam/



Inner Magnetosphere Particle Transport
and Acceleration Model: Diffusion

Next Radial diffusion is applied (Schulz and Lanzerotti, 1974)

ﬂz | 2 i(iz D, ﬂj_i
dt oL\ L o) ¢

with diffusion coefficients D, , (Brautigam and Albert, 2000)

0.056Kp—9.3251 10
D,, =10°0%p-9325

And Pitch- angle diffusion by introducing electron lifetimes
- by Chen et al. (2005) for strong diffusion
- and Shprits et al. (2007) for weak diffusion



Inner Magnetosphere Particle Transport
and Acceleration Model: Electrons’ Lifetimes

m, | 2¥B,
. - . T =
Strong diffusion: sd ( 0 J{ 1-p }

p 1s the particle momentum, vy is the ratio of relativistic mass to rest mass, Bh is

the magnetic field at either foot point of field line, ¥ is the magnetic flux tube
volume, 1 =0.25 backscatter coefficient (25% of electrons that will mirror at or
below 0.02 Re are scattered back to flux tube instead of precipitating into atmosphere)

Weak diffusion: 7,4 =4.8-10°B°L"E*, B2 =2.10>>"®

Bw is the local wave amplitude, E is Kinetic energy in MeV



AMC 12 CEASE Il ESA data

February 28 - March 3, 2013

AMC 12 geostationary satellite, CEASE-II
Instrument contains an Electrostatic

Analyzer (ESA) for measuring low energy
electron fluxes in 10 channels, 5 - 50 keV.

Small, CIR-driven storm with Dst of 75 nT
IMF Bz of -5 -10 nT,

Vsw from 350 to 650 km/s,

Psw peak at 8 nPa,

AE peaks of 800-1200 nT
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e- flux, 1/(cm”2 s sr eV)

Electron fluxes observed by AMC 12 CEASE Il ESA instrument
for 15-50 keV energies and modeled

with Chen et al. [2005] electron lifetimes for strong and Shprits et al. [2007] for weak
diffusion

1x10*
1x10°
1x10°
1x10*
1x10°

1x10*
1x10°
1x10?
1x10*
1x10°

1x10*
1x10°
1x10?
1x10*
1x10°

1x10*
1x10°
1x10?
1x10*
1x10°

1x10*
1x10°
1x10°
1x10*"
1x10°

February 28 - March 3, 2013

39.7-50.7 keV

—
. .
e

v

31.1-39.7 keV

LA

19.1-24.3 keV

ol e

M S

15.0-19.1 keV

i

ol

0

8 16 24
February 28

8 16 24 8 16 24 8

March 1

March 2

16 24
March 3

e- flux, 1/(cm"2 s sreV)

1x10*
1x10°
1x10°
1x10*
1x10°

1x10*

1x10°
1x10°
1x10"
1x10°

1x10*
1x10°
1x10°
1x10"
1x10°

1x10*
1x10°
1x10°
1x10"
1x10°

1x10*
1x10°
1x10°
1x10"
1x10°

February 28 - March 3, 2013

N 11.8-15.0 keV
ad el

1T T 1T T 1T T T 11 T T T T 1T 17 1T T T
9.27-11.8 keV
ﬂ'|

nmrrrrrTrrinrtrr Tt 1t 1t T T T 1T 17T 1T T 1T T"

M T e kS
VN
nmrrrrrTrrinrtrr Tt 1t 1t T T T 1T 17T 1T T 1T T"
5.74-7.29 keV

]

‘Q\q

N
' |

0

L. . 4.81-5.74 keV
% s kﬁ?&%{ -
rrrrrrrtrrrrtrrrrrr Tt T 1T 111 T T T T 1T T T/
8 16 24 8 16 24 8 16 24 8 16 24
February 28 March 1 March 2 March 3



Losses for low energy electrons due to wave-particle interactions

electron lifetime E= 10 keV, Kp=3 electron lifetime E=50 keV, Kp=3

electron lifetime E= 5 keV, Kp=3
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Parameterization of the electron lifetimes due to interactions with chorus waves

[Orlova and Shprits, 2014]:
polynomial expressions with 33 coefficients dependent on energy, radial distance, MLT

sector and Kp.
The model can be used for R=3-8 R , Kp= 0-6, and electron energies from 1 keV

to 2 MeV. MLT sectors include the night (-3<MLT<3), dawn (3<MLT<9),
prenoon (9<MLT<12), and postnoon (12<MLT<15) segments.



Losses for low energy electrons due to wave-particle interactions

electron lifetime E= 5 keV , Kp=3 electron lifetime E= 10 keV , Kp=3 electron lifetime E=50 keV/, Kp=3
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Parameterization of the electron lifetimes due to interactions with hiss waves
[Orlova et al., 2014].

two sectors, nightside at 21-06 MLT and dayside at 06-21 MLT,

with corresponding coefficients. The obtained parameterization is valid for distances
from 3 to 6 Re, Kp-indices up to 6, and energies from 1 keV to 10 MeV.
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Electron fluxes observed by AMC 12 CEASE Il ESA instrument
for 5-15 keV energies and modeled

With THEMIS model and Orlova and Shprits [2014] and Orlova et al. [2014] electron

e- flux, 1/(cm”2 s sr eV)

ifetimes
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Pitch angle diffusion coefficients from
the BAS chorus diffusion model

BAS chorus diffusion model [Horne et al., 2013; Glauert et al., 2014] provides pitch angle
diffusion coefficients Daa due to interactions with chorus waves

forKp=0,1,2,3,and4

at L-shells from 1.5 to 10 with 0.5 step and

in all MLT sectors binned by 3 hours

for pitch angles from 0 to 90 degrees with 1 degree step.

For low energy electrons, 10 energies are covered, namely, 1, 2, 3, 6, 10, 20, 30, 60, 100, and
200 keV.

Shprits et al. [2006] showed that when the pitch angle diffusion coefficient (as a function of
the equatorial pitch angle) does not exhibit local minima below 1/10th of the scattering rate
near the edge of the loss cone, the electron lifetimes can be estimated as the inverse value of

1
Daa (aLC )

the pitch-angle diffusion coefficient near the edge of the lossconeas 7=

We determined the loss cone pitch angles aLC at each L-shell and find the corresponding
Daa at the edge of loss cones by interpolating the available Daa at pitch angles around it.



electron lifetime E= 5 keV, Kp=3 electron lifetime E= 10 keV , Kp=3 electron lifetime E= 50 keV/ , Kp=3
2 2 2

Bh Bh

Ohglt 3h 15 15

1

.. ‘Cg . 05 3 05 & 05 £
3 0 - 0o - p <
15h R 05 : 05 05
'Histance "Histance ) L,

Lifetimes log10(t)(chorus) in days as (L, MLT)
electron lfetime  E=100 keV/, Kp=3 electron lifetime E=150 keV/, Kp=3 maps, for electron energies of 6, 10, 60, 100,

2

Z oy M- and 200 keV and Kp =3 computed from BAS

1

»28" | ¢  chorusdiffusion model
g = 1 5 ) p =
05 15h ST o 05
Histance y Bistance .
electron lifetime E= 6 keV, Kp=2-3 electron lifetime E= 10 keV, Kp=2-3 electron lifetime E= 60 keV , Kp=2-3
Bh 2 Bh 2 &h 2

Lifetimes log10(t)(chorus)

in days as (L, MLT) maps,
for electron energies of 5, 10,
50, 100, and 150 keV and

Kp =3 following
Orlova and Shprits [2014]. - 2 - 2

log(days)
log{days)
log(days)

log(days)
log{days)




Current IMPTAM output compared to
GOES MAGED 40 and 75 keV electron fluxes
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Last 24 hours
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Last 24 hours
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Recent advances in IMPTAM for electrons

In order to follow the evolution of the particle distribution function f and particle fluxes in
the inner magnetosphere dependent on the position, time, energy, and pitch angle , it is
necessary to specify:

(1) particle distribution at initial time at the model boundary;

Model boundary at 10 Re with kappa electron distribution function. Parameters are the number
density n and temperature T in the plasma sheet given by the new empirical model at L=6-11
dependent on solar wind and IMF parameters constructed using THEMIS ESA (eV-30 keV)

and SST (25 keV — 10 MeV) data during 2007-2013.

(2) magnetic and electric fields everywhere dependent on time;

The magnetic field model is Tsyganenko T96 model [Tsyganenko, 1995] with Dst index,
solar wind pressure Pg,,, and IMF By, and B, as input parameters. The electric field is
determined using the solar wind speed Vg, the IMF strength B,,,- and its components B, and
B (via IMF clock angle 6,,,) being the Boyle et al. [1997] ionospheric potential.

(3) drift velocities;

(4) all sources and losses of particles.
Most recent and advanced parameterization of the electron lifetimes due to interactions with
chorus and hiss waves obtained by Orlova and Shprits [2014] and Orlova et al. [2014].



e- flux, 1/(cm”2 s sreV)

Electron fluxes observed by AMC 12 CEASE Il ESA instrument
for 15-50 keV energies and modeled

With THEMIS model and Orlova and Shprits [2014] and Orlova et al. [2014]
electron lifetimes
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Summary

IMPTAM is very suitable for modeling of fluxes of low energy electrons (< 200 keV)
responsible for surface charging

It is NOT necessary to have even a moderate storm for significant surface charging
event to happen. Substorms are important but low energy electrons (at geostationary)
are not organized by AE index, for example.

It is a challenge to model low energy electrons with their important variations on 10
min scales. Advance made: A revision of the source model at 10 Re in the plasma sheet
was done using the particle data from THEMIS ESA and SST instruments for years
2007-2013. Most advanced representation of loss processes for low energy electrons
due to wave-particle interactions with chorus and hiss were incorporated using electron
lifetimes following Orlova and Shprits [2014] and Orlova et al. [2014].

Modeling of documented surface charging events detected at LANL with further
propagation to MEO: good agreement at GEO, reasonable values at MEO?

Still open issue: proper incorporation of substorm effects



