Data Assimilative Real Time Prediction of the Earth Radiation Belts

Yuri Shprits1,2, Tatyana Podladchikova3, Adam Kellerman1, D. Kondrashov1, Alexander Drozdov1, Irina Zhelavskaya1, Maria Spasojevic4

1Institute of Geophysics and Planetary Physics and Department of Earth Atmospheric and Planetary Sciences, UCLA
2Department of Earth Atmospheric and Planetary Sciences, MIT
3Skolkovo Institute of Science and Technology
4VLF Group, Department of Electrical Engineering, Stanford
Talk Outline

- Introduction
- 1D Data Assimilation
- VERB-3D
- Data Assimilation with VERB-3D
- Summary
Radiation Belts - Two Zone Structure

- Radiation belts – two donut shaped regions of high radiation encompassing the Earth
 - energies >100 keV
 - two-zone structure
- Inner belt: fairly stable
- Outer belt: can change on the time scale of an hour.
Pitch-angle – the angle between the magnetic field and particle’s velocity.

90° pitch-angle particles will stay in the equatorial plane.

Small pitch-angle particles will be lost to the atmosphere.

To determine the net radiation on spacecraft, fluxes should be known for all radial distances, pitch angles, and energies.
Kalman Filter

Kalman filtering uses observations containing inaccuracies (errors) and combines them with a model of RB by weighting observations and model according to their errors and producing a more precise estimate of state of RB.

Kalman filters are used for robotic motion planning and control, trajectory optimization, signal processing, weather prediction, atmospheric and oceanic sciences and econometrics.
Comparison of the Observations and the Radial Diffusion Model

- Observations are sparse.
- Model is continuous but may be missing essential physics.

L is approximately the distance from the Earth.
Kp is the index of geomagnetic activity.

[Shprits et al., 2007]
Data assimilation can fill in spacio-temporal gaps
Data assimilation shows building up peaks in Phase Space Density.

Shprits et al., 2007
Dynamic 1D Data Assimilation

Data is blended with the model according to the underlying structure of data and model errors.

Data from 5 spacecraft are assimilated and radial profile of PSD is dynamically reconstructed.

[Shprits et al., 2012, movie produced by M. Daa]
Multi Point Observations

EQUATORIAL ORBIT
Allows observations of the whole pitch-angle distribution including nearly equatorially mirroring particles.

EQUATORIAL ORBIT

LEO ORBIT
E.g. Lomonosov, SAMPEX, NOAA. Observations of precipitating and locally trapped fluxes; Several passes per day.

BALLOON OBSERVATION

11/22/2015
3D Fokker Planck Equation including the Mixed Diffusion Terms

\[\frac{\partial f}{\partial t} = \left(L^* \frac{\partial}{\partial L^*} \right)_{J_1,J_2} + \frac{1}{L^*} D_{L^*L^*} \frac{\partial f}{\partial L^*} \]

Radial diffusion

\[+ \left(p^2 \frac{\partial}{\partial p} \right)_{L,\alpha_0} \left(D_{pp} \frac{\partial f}{\partial p} \right)_{L,\alpha_0} + D_{p\alpha_0} \frac{\partial f}{\partial \alpha_0} \]

Energy diffusion

\[+ \left(\frac{1}{T(\alpha_0) \sin(2\alpha_0)} \frac{\partial}{\partial \alpha_0} \right)_{L,p} T(\alpha_0) \sin(2\alpha_0) \left(D_{\alpha_0p} \frac{\partial f}{\partial p} \right)_{L,\alpha_0} + D_{\alpha_0\alpha_0} \frac{\partial f}{\partial \alpha_0} \]

Pitch-angle diffusion

\[+ \text{Sources} - \text{Losses} \]
Validation of the Versatile Electron Radiation Belt (VERB) Code for Over 100 Days in 1990

VERB accounts for scattering into the atmosphere, loss to the magnetopause, local acceleration by waves and predicts global evolutions in terms of pitch angle, energy and radial distance.

VERB predicts the instantaneous location of the upper boundary of the slot region, the empty slot region, the stable inner belt, the location of the peak of fluxes and the amplitude of fluxes.

Shprits et al., 2009; Kim et al., 2010
Reconstruction of the State of the Radiation Belts \(J(L, E, \alpha) \) Using 5 Spacecraft
Data assimilation helped reveal the 4-zone structure during the March 1991 storm.
St Patrick’s Day Strom

Real-time data from GOES, Van Allen Probes, ACE

Our tools mature to the level that we can apply them for operational weather prediction.

We use ACE, GOES, Van Allen Probes real time data and GREEP predictions.

http://rbm.epss.ucla.edu/realtime-forecast/
Comparison of the VERB-4D with Van Allen Probes Observations

Stably trapped particles

Convection of the seed population of energetic electrons

11/22/2015
PROGRESS
PRediction Of Geospace Radiation Enviroment and Solar wind parameterS

New EC Horizon 2020 funded project currently at Grant Agreement Preparation phase.

PARTICIPANTS
- U. Sheffield
- FMI
- U. Warwick
- UCLA
- MIT/
- U. Michigan
- SRI NASU
- CNRS-LPC2E
- IRF-L

AIMS
- Development of a European Solar Wind model
- Models for the evolution of geomagnetic indices
- Statistical Wave models of wave activity
- Development and coupling of systems methodologies with physically based models
- Tools for robust, reliable forecasts for
 - geomagnetic indices
 - particle environment of the inner magnetosphere
Conclusions

• Data assimilation allows us to blend observations from various spacecraft and allows us to reconstruct the global state of the radiation belts.

• Data assimilation will be crucial for developing models for forecasting, nowcasting and specification models.

• Future work should include code coupling (PROGRESS), 3D and 4D data assimilation using multiple spacecraft.

• We need to develop new data assimilation tools for space weather applications.