

Aims and Advances of the PROGRESS PRediction Of Geospace Radiation Environment and Solar wind parameterS

S. Walker, R. Erdelyi, T. Arber, N. Ganushkina, P. Wintoft, M. Liemohn, Yu. Shprits,

V. Krasnoselskikh, M. Balikhin

ssg.group.shef.ac.uk/progress/html

This project has received funding from the *European Union's Horizon 2020 research and innovation programme* under grant agreement No 637302.

Participants

	The University Of Sheffield.	R. Von Fay-Siebenburgen, M. Balikhin, S. Walker, R. Boynton
-	ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE	N. Ganushkina, I. Sillanpaa, S. Dubyagin
	THE UNIVERSITY OF WARWICK	T. Arber, K. Bennett
	GFZ Helmholtz Centre POTSDAM	Y. Shprits
	UNIVERSITY OF MICHIGAN	M. Liemohn, B. van der Holst
	IKA	V. Yatsenko
	LPC2E	V. Krasnoselskikh, V. Shastun
-		P. Wintoft, M. Wik

Balikhin VERB- NARMAX

Solar wind propagation to L1

AWSoM Validation

SWIFT Validation

Normalised mass density for a Gaussian pulse in spherical geometry. The pulse occur a r=0 (left) and is offset (right).

SWIFT Validation

Magnetic field Bx (left) and number density (right) over half a solar rotation basd on a mode, Parker solar wind.

Forecast of Geomagnetic Indices

- Geomagnetic activity expressed in terms of geomagnetic indices such as Dst, Kp, or AE
- Indices are used as inputs to numerical models such as VERB and IMPTAM
- Methodologies used
 - Neural nets (IRF)
 - NARMAX (U. Sheffield)
 - NARMAX + Lyapunov exponents (SRI)

Current status – a review of current online models performed as well as study of methods to assess quality

Assessment of forecasts

Models used

- BMR: Burton et al. (1975)
- OM: O'Brien & McPherron (2000)
- LUND: Lundstedt et al. (2001)
- SN_1: Boynton et al. (2011)
- PERS: Persistence Dst(t)=Dst(t-1)

Assessme	ent
MAE =	$\frac{1}{n}\sum_{i=1}^n e_i $
MSE =	$\frac{1}{n}\sum_{i=1}^n e_i^2$
RMSE =	$\sqrt{\frac{1}{n}\sum_{i=1}^n e_i^2}$

$$\begin{aligned} \text{CORR} &= \frac{\sum_i (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_i (x_i - \bar{x})^2 \sum_i (y_i - \bar{y})^2}} \\ \text{MSESS} &= \frac{\text{MSE} - \text{MSE}_{\text{ref}}}{\text{MSE}_{\text{perfect}} - \text{MSE}_{\text{ref}}} = 1 - \frac{\text{MSE}}{\text{MSE}_{\text{ref}}} \end{aligned}$$

IMPTAM Low Energy Electrons Leader -Ganushkina, FMI

Solution Content in the second state of the se

The one day ahead forecasts of the relativistic electron fluxes with energies greater than 2 MeV at GEO has been developed in Sheffield and is available in real time:

<u>http://</u>

www.ssg.group.shef.ac.uk/ USSW/2MeV_EF.html.

Past 90 days

Past 200 days

NOAA REFM Forecast

Space Weather Prediction Center

01/05/2014 21:09

NOAA / Space Weather Prediction Center

Relativistic Electron Forecast Model

Presented by the USAF and NOAA/ Space Weather Prediction Center

The impact of high-energy (relativistic) electrons on orbiting satellites can cause electric discharges across internal satellite components, which in turn leads to spacecraft upsets and/or complete satellite failures. The Relativistic Electron Forecast Model predicts the occurrence of these electrons in geosynchronous orbit.

Plots and data are updated daily at 0010 UT. Dashed vertical lines indicate the last vertical value. When the input parameters are not available, the forecast is not shown.

REFM Verification Plot and Model Documentation

<u>1 to 3 Day Predictions</u> (text file) and corresponding <u>Performance Statistics</u>. Predictions created using data from the <u>ACE spacecraft</u>.

Historical electron particle data is archived at the National Geophysical Data Center for Solar-Terrestrial Physics.

Visually impaired users may <u>contact SWPC</u> for assistance. Please <u>credit SWPC</u> when using these images.

Comparison of REFM and SNB³GEO Forecasts (01.03.2012-03.07.2014)

Balikhin, Rodriguez, Boynton, Walker, Aryan, Sibeck, Billings (submitted to SW 2015)

$$PE = 1 - \frac{1}{N} \sum \frac{(Y(t) - Ym(t))^2}{\operatorname{var}(Y)}$$

$$C_{cor} = \frac{1}{N} \sum \frac{(Y(t) - \langle Y(t) \rangle)(Ym(t) - \langle Ym(t) \rangle)}{\sqrt{\operatorname{var}(Ym)\operatorname{var}(Y)}}$$

Comparison of REFM and SNB³GEO Forecasts

Balikhin, Rodriguez, Boynton, Walker, Aryan, Sibeck Billings, SW 2016

Model	Prediction Efficiency Flux	Correlation Flux	Prediction Efficiency Log Flux	Correlation Log Flux
REFM	-1.31	0.73	0.70	0.85
SNB ³ GEO	0.63	0.82	0.77	0.89

Comparison of REFM and SNB³GEO Forecasts

Balikhin, Rodriguez, Boynton, Walker, Aryan, Sibeck Billings, SW 2016

0 1					-	
Fluence $(cm^{-2}sr^{-1}day^{-1})$	> 1	.08	> 1	$0^{8.5}$	>1	0^{9}
REFM HSS	0.6	66	0.4	82	0.43	37
Observation:	Yes	No	Yes	No	Yes	No
Forecast						
Yes	86	22	23	22	4	7
No	43	510	21	595	3	647

 Table 2.
 Contingency tables and Heidke skill scores for the REFM predictions.

Table 3. Contingency tables and Heidke skill scores for the SNB³GEO predictions.

$\overline{\text{Fluence}(\text{cm}^{-2}\text{sr}^{-1}\text{day}^{-1})}$	$> 10^{8}$	$> 10^{8.5}$	$> 10^9$
SNB ³ GEO HSS	0.738	0.634	0.612
Observation:	Yes No	Yes No	Yes No
Forecast			
Yes	106 33	31 19	4 2
No	23 499	13 598	3 652

$$S = \frac{2(xw - yz)}{y^2 + z^2 + 2xw + (y + z)(x + w)}$$

Extending SNB³GEO to lower energies

The University Of Sheffield.

Model	Forecast Time (hours)	PE (%)	CC (%)	Period
40-50 keV	10	66.9	82.0	01.03.2013- 28.02.2015
50-100 keV	12	69.2	83.5	01.03.2013- 28.02.2015
100-200 keV	16	73.2	85.6	01.03.2013- 28.02.2015
200-350 keV	24	71.6	84.9	01.03.2013- 28.02.2015
350-300 keV	24	73.6	85.9	01.03.2013- 28.02.2015
> 800 keV	24	72.1	85.1	01.01.2011- 28.02.2015
>2MeV	24	82.3	90.9	01.0.12011- 28.02.2015

Extending SNB³GEO to lower energies

- Interaction between waves and particles in the radiation belts modeled using sets of diffusion tensors for each wave mode.
- Current statistical models of wave amplitudes neglect solar wind measurements and geomagnetic evolution
- Analysis of VAP data has resulted in a new set of models
- NARMAX ERR analysis used to investigate relationship between wave amplitude, solar wind variations and evolution of geomagnetic indices

A10225

PROGRESS: wave models

• Statistical Wave models and physics of wave particle

A10225

Figure 2. Equatorial wave intensity of lower band chorus as a function of L^* , MLT and geomagnetic activity for each of the five satellites.

THEMIS A 2010

MLT L-shell $4 < L < 5 \quad 5 < L < 7$ 04-08 1162 1018 08-12 952 894 970 12 - 16888 665 16-22 115022-04994 1118

Estimated number of LBC events in chosen bins

L-shell 4-5 and MLT 22-04 $\,$

LBC wave at $L = 4-5$ and $MLT = 22-04$						
	Quadratic Nonlinear	•				
ERR(%)	Control Parameter	ERR(%)				
11.52	AE(t-1)p(t-2)	13.70				
8.45	n(t-2)V(t-6)	4.52				
1.54	AE(t-1)V(t-10)	2.50				
1.16	Dst(t-1)AE(t-3)	1.71				
0.92	AE(t-1)AE(t-1)	1.51				
23.58	∑ERR	23.93				
	-5 and MI ERR(%) 11.52 8.45 1.54 1.16 0.92 23.58	$-5 \text{ and } MLT = 22-04$ Quadratic Nonlinear $ERR(\%) Control \text{ Parameter}$ $11.52 AE(t-1)p(t-2)$ $8.45 n(t-2)V(t-6)$ $1.54 AE(t-1)V(t-10)$ $1.16 Dst(t-1)AE(t-3)$ $0.92 AE(t-1)AE(t-1)$ $23.58 \sum ERR$				

L-shell 4-5 and MLT 04-08 $\,$

$\overline{\text{LBC}}$ wave at $L = 4-5$ and $MLT = 04-08$					
Linear		Quadratic Nonlinear	•		
Control Parameter	ERR(%)	Control Parameter	ERR(%)		
AE(t-1)	21.75	AE(t-1)AE(t-1)	23.46		
V(t-7)	11.38	AE(t-1)p(t-1)	4.62		
Dst(t-7)	2.08	V(t-7)	3.09		
$B_T \sin^6(\theta/2)$ (t-10)	0.91	n(t-1)	2.60		
V(t-5)	0.41	AE(t-1)	1.95		
$\overline{\sum}$ ERR	36.53	∑ERR	35.72		

L-shell 4-5 and MLT 16-22

LBC wave at $L = 4-5$ and $MLT = 16-22$						
Linear		Quadratic Nonlinear				
Control Parameter	ERR(%)	Control Parameter	ERR(%)			
$\overline{\text{Dst}(\text{t-9})}$	3.77	Dst(t-9)V(t-3)	4.10			
n(t-3)	1.53	n(t-3)	1.54			
AE(t-7)	0.77	$B_T \sin^6(\theta/2) (t-5) n(t-10)$	1.09			
$B_T \sin^6(\theta/2)$ (t-5)	0.62	AE(t-7)V(t-3)	0.78			
p(t-1)	0.39	$\operatorname{Dst}(t-1)B_T \sin^6(\theta/2)(t-9)$	0.75			
\sum ERR	7.07	\sum ERR	8.26			

EMW Spectral Observations

Most studies of the amplitudes of magnetosonic waves assume a continuous spectrum and hence the validity of the quasi-linear theory

The figure shows an overview of the STAFF spectrum analyser observations on July 6th, 2013. Occurrences of Equatorial magnetosonic waves are indicated by the red circles.

The waves appear continuous in frequency space. Thus, quasi-linear theory is used to estimate their effects on electron acceleration and loss processes.

Last Updoted: Mon Jul 8 14:48:35 2013

http://www.cluster.rLoc.uk/cadewab/

Balikhin, Shprits, Walker et al., Nature Comm, 2015

Balikhin, Shprits, Walker et al., Nature Comm, 2015

STAFF 3 CWF 2013-07-06 Bx component

PROGRESS project is developing according to the proposed schedule