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Summary

The overall aim of WP 3 concerns improvement and new development of models based on
data driven modelling, such as neural networks and NARMAX. Existing models for Dst
and Kp will be analysed and verified with the aim of finding weaknesses and to suggest
improvements. Solar wind and geomagnetic indices shall also be analysed in order to
develop models for the identification of features, such as (but not limited to) shocks, sud-
den commencements, and substorms. Such categorisation will aid the model development
and verification, and can also serve as alternative approach to models providing numerical
input-output mapping. In addition to the development of Dst and Kp models new models
will be developed to forecast AE . The models will be implemented for real-time operation
at IRF and data and plots will be provided on a web server.

This deliverable is targeted at the development of existing Kp and Dst forecast models
that are driven by solar wind data. The models have been evaluated in this WP with the
results described in D3.3. Further evaluation has been carried out during the development
process. The existing forecast models from IRF are named IRF-Kp-2000 and IRF-Dst-
2002 with the number indicating the year of their publication, and the updated models
are named IRF-Kp-2017 and IRF-Dst-2017. Similarly the University of Sheffield models is
named UoS-Kp-NARX-2016. The models by Space Research Institute in Ukraine (SRI)
are covered in a separate report. This report summarised the development but leaves
the detailed description to published or submitted manuscripts, or manuscripts under
preparation.

Acronyms

ACE Advanced Composition Explorer
DSCOVR Deep Space Climate Observatory
GFZ GeoForschungsZentrum
GSFC Goddard Space Flight Center
IRF Institutet för rymdfysik (Swedish Institute of Space Physics)
NASA National Aeronautic and Space Administration
NCEI National Centers for Environmental Information
NOAA National Oceanographic and Atmospheric Administration
SWPC Space Weather Prediction Center
SRI Space Research Institute (Ukraine)
UoS University of Sheffield
WDC World Data Center
WP Work Package
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1 Introduction

A large number of algorithms and models exist for the prediction of Kp and Dst as de-
scribed in the model overview in deliverable D3.1. The sections below describe the further
development of existing models previously developed by the individual team members.
For this purpose the data collected and described in D3.2 have been used. The evaluation
of the models (D3.3) indicates weaknesses and provides a starting point for the further
development.

2 Development of the IRF-Kp-2017 model

The model by Boberg et al. (2000) consists of two neural networks that predict Kp at
lower and higher activity levels, respectively. The outputs from the two networks are
combined through a weighting to produce a single output. The model is driven by real-
time solar wind at L1 and has been in operation at IRF-Lund since then (see example in
Figure 1). The model is driven by ACE real-time data but will be switched over to data
from the DSCOVR spacecraft.

Figure 1: Example of real-time forecast currently published at IRF-Lund driven by ACE
solar wind data.

In the following we refer to the model named LUND NC in D3.3 as the IRF-Kp-2000
model, were 2000 refers to the year of its publication. There is also a LUND FC model
in D3.3 that we do not address any further after this paragraph. The difference between
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LUND NC and LUND FC is that the NC model predicts Kp for the same timestamp
as given by the latest solar wind, while the FC model predicts the next 3-hour interval.
The FC model forecast works in a statistical sense, although storm onsets will in most
cases be missed. The prediction lead-time for the NC model is governed by the solar
wind propagation time from L1 to Earth. The verification of the IRF-Kp-2000 model
(D3.3) showed that the mean absolute error (MAE) was 0.72 for the nowcast model
and 0.88 for the forecast model, and with linear correlation coefficients (CORR) of 0.88
and 0.79, respectively. Note that Kp is an ordinal variable with 28 ordered categories
{0o, 0+, 1−, 1o, 1+, . . . , 9−, 9o} that we transform to a real number in the interval [0, 9].

In Wintoft et al. (2017) further evaluation of the IRF-Kp-2000 nowcast model were
carried out during the development. It was noted that the MAE showed a large degree of
variation with Kp level (see Figure 2).
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Figure 2: The variation of MAE as function of observed Kp for persistence (Pers) model
and the different IRF-Kp models. Figure from Wintoft et al. (2017).

Another finding was that the onsets of some storms were missed. After further analysis,
together with the fact that the Kp index is measuring the range of magnetic disturbances
(Mayaud 1980), we concluded that the 3-hour averages of the solar wind used for inputs
do not capture the physical processes due to too low temporal resolution.

To capture phenomena that occur on short timescales (minutes) but still have a 3-
hour cadence in agreement with Kp we introduced 3-hour maxima and minima of the
solar wind data. This new parametrisation and the use of more data since the publication
of the IRF-Kp-2000 model made substantial improvements on the forecasts (Wintoft et al.
2017). The updated models MAE as function of Kp are shown in Figure 2 and are called
IRF-Kp-2017. Two variants exist, one that is driven by one-minute resolution solar wind
data (IRF-Kp-2017M) and one that is driven by hourly resolution data (IRF-Kp-2017H).
We will come back to the two variants in the next paragraph. The high resolution ACE
solar wind data used extend over the years 1998 to 2015. From this series we set aside
data for the years 2001 and 2011 for testing. Data from the years 2000, 2006, and 2012
make up the validation set, while the training set consist of the remaining data. The
overall MAE, using only data from the test set, dropped from 0.68 to 0.47–0.51 (Table 1).
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Similar scores were obtained when evaluated on all available data.

BIAS MAE RMSE CORR MSESS:PERS

Pers -0.00 0.64 0.87 0.77 nan
IRF-Kp-2000 0.31 0.68 0.84 0.83 0.08
IRF-Kp-2017M 0.04 0.47 0.61 0.90 0.51
IRF-Kp-2017H 0.09 0.51 0.66 0.89 0.43
IRF-Kp-2017Kp 0.03 0.45 0.60 0.91 0.53

Table 1: Measures and scores for predicted Kp on the test set. The models are: persistence
(Pers); Boberg et al. (2000) (IRF-Kp-2000); model with minute resolution solar wind
(IRF-Kp-2017M); and model with hourly resolution solar wind (IRF-Kp-2017H). Table
from Wintoft et al. (2017)

As the Kp forecast algorithm also should be able to use predicted solar wind, and
because the temporal resolution of the predicted solar wind is lower, another model was
developed that takes 1-hour averages as input (IRF-Kp-2017H). The same datasets and
model structure was used for the development of the H model as for the M model. Natu-
rally, we expect the H model to perform slightly poorer than the M model, and the MAE
is slightly higher (0.51) and the correlation is slightly lower (0.89) as shown in Table 1.
But the H model can be driven by the forecast solar wind delivered by WP2 and thereby
completing the Sun-Earth chain.

An example with a detailed view of the prediction using 1-minute and 1-hour resolution
solar wind data is shown in Figure 3. In both cases the solar wind is provided with a one-
minute cadence where the hourly data are 1-hour running averages. The sudden change
in solar wind conditions as seen in the velocity (top panel) is marked with a blue dot at
the point in time when the velocity increases and with a red diamond when the jump
has occurred. The blue dot and red diamond are placed on the same timestamps for the
observed horizontal geomagnetic field (second panel). The jump in the geomagnetic field
is marked with a green plus. The geomagnetic field variation is related to the Kp index as
Kp is derived from geomagnetic data. The bottom panel shows the propagation time in
minutes from L1 to Earth. Initially it is about 55 minutes but at the time of the velocity
jump it decreases to about 40 minutes. At the timstamp marked with the blue dot in
the solar wind the predicted Kp (third panel) from the IRF-Kp-2017M model will have a
lead-time of ≈ 55 minutes, thus the predicted Kp value is marked with the corresponding
blue dot. The red horizontal bar extending backwards from the blue dot indicates a 3-
hour interval. A few minutes later the L1–Earth propagation lead time has decreased to
≈ 40 minutes, which means that the predicted Kp values may be located at timestamp
for which prediction already exist, or even at earlier timstamps. The red curve joining
the blue dot and red diamond in the third panel shows this: consecutive predictions are
placed on the same timestamps or even earlier which means that the curve goes straight
up or even backwards. In practice this means that the Kp ≈ 3 forecast at the time of
the blue dot becomes invalidated at the timestamp of the red diamond and replaced with
the Kp ≈ 8 forecast, and this is just a consequence of that the propagation time from
L1–Earth decreases faster than the one-minute sampling rate. It should be noted that
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the observed Kp value (blue step curve) from 00UT to 03UT can not be determined until
after 03UT.

The green dashed curve in the third panel shows the predicted Kp from the H model,
and naturally it shows smoother variation and also some lagging, however, that is not
crucial as the intention is to drive it with predicted solar wind data which means that the
total prediction lead time will be days.
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Figure 3: Predicted Kp at one minute cadence. From top to bottom: solar wind velocity
at spacecraft location; horizontal geomagnetic field at NGK; final and predicted Kp;
prediction lead time τ in minutes. In the third plot, the red solid curve is predicted
Kp driven by minute resolution solar wind data, and green dashed curve using hourly
resolution data. The blue circle, red diamond, and green plus mark three consecutive
points in time. The three horizontal red lines indicates the corresponding three hour
intervals that the forecasts represent. Figure from Wintoft et al. (2017).

In Figure 4 the observed and forecast Kp are shown over a longer period driven by
hourly OMNI solar wind data from the test set. The event from Figure 3 is visible in
the beginning of the period. It is seen that the predicted Kp follows closely the observed
Kp over the full range from low to high Kp values. In many cases the onsets are timely
predicted with one clear exception in 2001-04-04 where the prediction lags by one step



Project: PROGRESS
Deliverable: 3.4

Doc No: PROGRESS 3.4
Page: 9 of 19

(i.e. 3 hours). During the strongest event the prediction goes off scale and reach a value
close to Kp = 12.
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Figure 4: Prediction using the IRF-Kp-2017H model driven by OMNI hourly resolution
data over the period 2001-03-26 to 2001-04-15 (from test set). From top to bottom: solar
wind B and Bz; solar wind particle density n; solar wind velocity V with measuring
spacecraft indicated; observed (blue) and predicted (red) Kp with blue line indicating the
maximum Kp = 9.

The new models, IRF-Kp-2017Mand IRF-Kp-2017H, are available for implementation
and further testing can be performed during WP7. It will be especially interesting to
study those cases when the predictions fail and try to understand the cause and see if
improvements can be made.

3 Development of the UoS-Kp-NARX-2016 model

The UoS-Kp-NARX-2016 model employs a data-based or system identification to develop
transparent and parsimonious models for the prediction of the Kp index. The aim of
the system identification modelling approach is to find a mathematical model that can
be used to characterise the behaviour of a system based on discrete-time observational
data of the input and output of the system (Billings 2013, Wei, Billings & Balikhin 2004,
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Wei, Billings & Liu 2004, Wei & Billings 2008). Two different implementations of NARX
models for the prediction of Kp have been developed and compared (Ayala Solares et al.
2016), namely a recursive sliding window model and a direct prediction model. These
models are based on nonlinear system identification techniques and the NARX (nonlinear
autoregressive with exogenous inputs) method. A major advantage of these models is
that they provide a clear indication of the dependence of the Kp index on various solar
wind parameters. While the role of solar wind speed and dynamic pressure as drivers
of the Kp index has been confirmed, this new development provides an explicit formula
linking the contribution of these drivers to changes in the Kp index. Thus, this technique
provides scientific insight into the dependence of Kp on solar wind speed and dynamic
pressure. It was found that the latter, direct prediction model had the best performance
so is used as the basis for the UoS-Kp-NARX-2016 model.

The NARX methodology is used to determine the relationship between the input
and output parameters of a backbox system. The various input-output parameters used
in this development of the UoS-Kp-NARX-2016 model are listed in Table 2. The data
for these parameters are taken from the low resolution OMNI dataset, which consists of
hourly averaged near-Earth measurements of the solar wind magnetic field and particle
environment from several spacecraft such as IMP 8, WIND, Geotail and ACE. The output
parameter is the Kp index, which is measured every three hours. In order to match
the time resolutions between the input and output signals, the observed Kp values are
interpolated to 1-hour resolution by simply repeating the last measured value during the
next two hours.

Table 2: Input and Output Parameters

Variable Symbol Description
Inputs V Solar wind speed [km/s]

Bs Southward interplanetary magnetic field [nT]
VBs Southward interplanetary magnetic field

[VBs = VBs/1000]
p Solar wind pressure [nPa]
Sp Square root of solar wind pressure

Output Kp Index of interest

The NARX methodology (Billings 2013, Wei, Billings & Liu 2004, Wei & Billings 2008)
was applied to the set of input/output parameters from the year 2000. The first half of
this dataset was used for model training while the second half were reserved for model
testing. A total of four models have been identified to provide forecasts with lead times
of 3, 6, 12, and 24 hours. The model performances are summarised in Table 3. Figure 5
shows, from top to bottom, example output from the 3, 6, 12, and 24 hour ahead forecasts.
The measured Kp is shown in black. It is seen that in general there is excellent agreement
between the forecasts and the measured Kp except for a short period around July 15-16.
This time corresponds to a period when the Kp index exhibited a large fluctuation that
is not captured by the model. Reasons for this are still being investigated in a hope to
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improve our model. Possible solutions include: i) to further optimise some key model
parameters, for example, the maximum lags of the input and output variables, and the
model complexity (e.g. the nonlinear degree of the polynomial model); these parameters
are important; ii) the training data were chosen from the year 2000 in some arbitrary
sense. These training data may not be sufficiently representative for the data dynamics
of the other years. Future investigation would therefore consider finding a good common
model structure that can accommodate severe nonlinearity and non-stationarity in Kp
index, as well as in various solar wind parameters and geomagnetic field indices.

Table 3: 3, 6, 12 and 24 hour ahead predictions

Horizon RMSE Pearson Coefficient PE
3 0.759 0.871 0.7585
6 0.833 0.842 0.710
12 0.862 0.831 0.690
24 0.872 0.827 0.682

Comparing the results obtained with those presented in Wing et al. (2005), the values
of the two model performance metrics (i.e. prediction performance and correlation coeffi-
cient) calculated from our results are slightly lower. This may be explained from several
factors: i) all the data for all input and output variables used for model estimation in this
study are raw data sampled hourly; no pre-processing (e.g. smoothing, interpretation,
etc.) was performed; ii) the model input variables used in this work are not exactly the
same as those used in previous studies; iii) some coefficients required by the models, for
example the maximum lags of the input and output variables, may need to be further
optimised.
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Figure 5: Predictions of the Kp index for the four horizons of interest during the middle
of July 2000 using the direct approach. The black line corresponds to the measured Kp
values.
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4 Development of the IRF-Dst-2017 model

The Dst prediction model by Lundstedt et al. (2002) is a recurrent (time delayed outputs
are fed back into the inputs) neural network known as the Elman network. The Elman
network automatically finds the dynamics (memory) of the system during the training
phase by adjusting the context weights (recurrent weights). The Elman network thus has
the nice property that it can learn both the directly driven relation from the inputs and
the dynamical component. The main disadvantage is that the data need to be contiguous
and presented ordered in time which leads to a higher degree of complexity when selecting
datasets and handling datagaps.

The IRF-Dst-2002 model has be operation for more than 15 years and the predictions
have published in real-time at IRF-Lund. An example of predictions using the IRF-Dst-
2002 model is shown in Figure 6.

Figure 6: Example of real-time forecast currently published at IRF-Lund driven by ACE
solar wind data.

The verification of the IRF-Dst-2002 model (D3.3) showed that the mean absolute
error (MAE) was 10.6 nT and with linear correlation coefficients (CORR) of 0.85 based
on OMNI solar wind data (D3.2) for the years 1998–2014. Overall this performance is
very good, however, it was also noted that there was a saturation of the model so that
predictions did not reach below about -230 nT. It should also be noted that the model
was developed on data before about year 2002 (year of publication), thus today we have
much more data with good coverage. Another goal with the model was to make it as
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small as possible by having few processing units and thereby limiting the number of free
parameters.

Within this project new Dst prediction models (IRF-Dst-2017) have been developed
(?) and compared to the IRF-Dst-2002 model. To simplify the data selection procedure
time-delay neural networks are applied instead of recurrent networks. The length of the
time-delay line (the embedding dimension) needs to be defined. There is an unlimited
number of ways that the embedding can be constructed. However, a typical isolated Dst
storm has a recovery phase that lasts for several hours. In the early work by Burton et al.
(1975) a constant decay term with decay time 7.72 hours was used. Later work (O’Brien
& McPherron 2000) suggested a variable decay term with decay time between 2.4 and
19 hours. This means that it will take 44 hours to reach within 10% of the quiet Dst with
a decay time of 19 hours. The driven Dst main phase is caused by changes in the solar
wind (negative turning of Bz, jumps in n and V ) while the recovery phase is decoupled
from the solar wind and is dependent on the overall evolution. Therefore, we assume that
features more distant in time do not require a detailed representation. Thus, instead of
providing each hourly value 44 hours back in time we take temporal averages of increasing
sizes when going back in time. The embedded velocity then becomes

V̄ (t) = [V (t),

〈V (t− 1), V (t− 2)〉,
〈V (t− 3), V (t− 4), V (t− 5), V (t− 6)〉,
〈V (t− 7), . . . , V (t− 14)〉,
〈V (t− 15), . . . , V (t− 30)〉,
〈V (t− 31), . . . , V (t− 62)〉] (1)

where 〈·〉 is the average. Performing the same embedding on B, By, Bz and n results in
6× 5 = 30 inputs.

Using the above embedding and removing all samples with data gaps in the solar wind
results in the number of available samples and range of Dst as shown in Figure 7. From
this set we extract the four years 1981, 1996, 2001, and 2008 which we call the Test set.
The Test set is not used in the model development and optimisation. The remaining data
are divided into two sets, A and B, each consisting of data from even and odd years,
respectively.

A large set of different networks have been initialised with different weights and number
of hidden units. Different types of learning algorithms and learning parameters have also
been tested. The networks have been trained (weight adaption) on one set (A or B) and
validated against the other set (B or A). The forecast lead-time was explored by allowing
the lead-time to vary from 0 hours up to 3 hours. It should be noted that this lead time
is in addition to the variable solar wind propagation lead time. The result is shown in
Figure 8. In a statistical sense there is no real difference between the τ = 0 and τ = 1 hour
models, which is expected considering the Dst storm build-up time.

The performance of the τ = 1 hour model is compared with the IRF-Dst-2002 model
with statistical measures summarised in Table 4. It is clear that the IRF-Dst-2017 model
performs better than the IRF-Dst-2002 model. There are several reasons for this improve-
ment. Firstly, we have more data to train and evaluate the model. Secondly, we allow the
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Figure 7: Number of samples per year (top panel), maximum and minimum Dst for each
year (middle panel), and one standard deviation Dst (bottom panel).
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selection of a bigger neural network, in this case it has 10 hidden units as compared to 4
in the IRF-Dst-2002 model. Finally, we have also included the total solar wind magnetic
field B and the Y-component By. The importance of the latter will be further explored
in the future.

Model Set n BIAS MAE RMSE CORR

IRF-Dst-2016 All 177116 0.29 7.03 9.60 0.88
IRF-Dst-2002 All 177116 -6.09 9.65 12.40 0.85
IRF-Dst-2016 A 72511 0.02 7.21 9.58 0.90
IRF-Dst-2002 A 72511 -6.24 10.07 13.05 0.85
IRF-Dst-2016 B 79616 0.27 6.92 9.49 0.86
IRF-Dst-2002 B 79616 -6.17 9.27 11.64 0.85
IRF-Dst-2016 Test 24989 1.13 6.85 9.97 0.89
IRF-Dst-2002 Test 24989 -5.36 9.65 12.83 0.85

Table 4: The BIAS, MAE, RMSE, and CORR computed for the two models using all
data (All) and using the subsets (A, B, Test). The number of samples (n) is also given.

Inevitably, the models will perform worse on the extremes of the Dst range due to the
limited number of samples for strongly negative and positive Dst values. Therefore, we
study the performance as a function of Dst (Figure 9). In the range Dst ∈ [−100, 0] nT
the models have comparable BIAS and MAE, while for the more extreme values the
IRF-Dst-2017 model performs better.
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Figure 9: The BIAS and MAE as function of Dst for the IRF-Dst-2002 model (blue
circles) and the IRF-Dst-2017 model (red diamonds) using all data (solid lines) and Test
set (dashed lines). The markers are located at the centres of each Dst bin, except the
Dst = −325 which includes all values with Dst < −300 nT.

The detailed performance of the models are illustrated with a few examples from the
test set in year 2001 in Figure 10. The first event in the beginning av March 2001 reached
Dst ≈ −70 nT. The IRF-Dst-2002 and the nowcast IRF-Dst-2017 models comes very
close, while the 1-hour forecast IRF-Dst-2017 reaches around -90 nT. However, looking
carefully the onset of the storm the two new models follows Dst very well.
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The second example at the end of March 2001 is stronger and reaches Dst ≈ −390 nT.
None of the models reach that value, this illustrates the great challenge to predict the
rare but strong events. The 2017 models comes closest at predicted values of -300 nT,
while the 2002 model saturates at slightly below -200 nT.
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Figure 10: Forecast of Dst using the IRF-Dst-2002 model (2002), the 0-hour forecast
(nowcast) IRF-Dst-2017 model (2017-0), and the 1-hour forecast IRF-Dst-2017 model
(2017-1). The top three panels show solar wind magnetic field (B and Bz), density (n),
and speed (V ) from the OMNI datasets.
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5 Conclusions

The forecasting algorithms for Kp and Dst have been updated and shows improved per-
formance. As the algorithms are computationally lightweight it is straightforward to set
them up for real-time operation. The algorithms can be driven by real-time measure-
ment from the L1 solar wind location or from predicted solar wind provided from WP 2
Propagation of the Solar Wind from the Sun to L1. The algorithms are available for the
implementation as part of WP7 Fusion of forecasting tools. The different forecast models
can be run in parallel and their outputs can be compared against each other and against
observed Kp and Dst .

During WP7 further testing and updates of the models can be performed. This will
include the whole data processing pipeline from measured and predicted solar wind data,
through the Kp and Dst forecast algorithms, to the final end products. Further error
analysis on the forecasts can be carried out in order to better understand situations when
the forecasts fails. The use of solar wind data from the new DSCOVR spacecraft will also
be interesting to study.
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