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Summary

The overall aim of WP 3 concerns improvement and new development of models based on
data driven modelling, such as CNN and NARMAX. Existing models for Dst and Kp will
be analysed and verified with the aim of finding weaknesses and to suggest improvements.
Solar wind and geomagnetic indices shall also be analysed in order to develop models for
the identification of features, such as (but not limited to) shocks, sudden commencements,
and substorms. Such categorisation will aid the model development and verification,
and can also serve as alternative approach to models providing numerical input-output
mapping. In addition to the development of Dst and Kp models new models will be
developed to forecast AE . The models will be implemented for real-time operation at
IRF and data and plots will be provided on a web server.

This deliverable is targeted to identify existing operational Kp, Dst , and AE forecast
models. The models are analysed regarding their respective requirements and benefits
considering, e.g. inputs, latency, lead time, and resources. A subset of the identified
models that are available to the team will be verified in D3.3

1 Introduction

The coupling from the interplanetary medium through the magnetopause into the mag-
netosphere is non-linear with respect to the driving plasma and magnetic fields. This
has been know for a long time, e.g. the energy input through reconnection is to a first
approximation related to a ramp function of the upstream electrical field. Further, the
dynamic evolution of the magnetospheric state is both driven by the external interplan-
etary medium and internal processes. Various aspects of the magnetospheric state can
to some extent be described with geomagnetic indices, as originally devised. However,
indices have come into use as space weather indicators for disturbed or hazardous condi-
tions, and as inputs to various empirical and physical models of the magnetosphere and
ionosphere. This report tries to summarise the current empirical models, with emphasis
on operational models, for the coupling from the interplanetary medium as measured at
L1 to the geomagnetic indices Kp, Dst , and AE .

Geomagnetic indices, and indices in general, “aims at giving summarised information
in a continuous way concerning a more or less complex phenomenon which varies with
time” (Mayaud 1980). The different geomagnetic indices are constructed in ways to
provide summary information of different geophysical processes. The indices studied here
are the ring current index Dst , global range index Kp, and the auroral electrojet index
AE . These indices are commonly used to characterise different aspects of space weather
and for indication of various degree of disturbances on technological systems. The indices
are also used as inputs to empirical or physics based models that describes some space
weather regime.

The aim here is not to study the processes that are captured in the indices, but to
study ways of predicting the indices. The work is further constrained to only study models
that are driven by upstream interplanetary plasma and magnetic filed data, and possibly
the indices themselves. The interplanetary data and indices are described in more detail
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in technical note D3.2.
The indices are used as inputs to numerical geophysical models. In PROGRESS the

Inner Magnetosphere Particle Transport and Acceleration Model (IMPTAM) (Ganushk-
ina et al. 2001, 2005, 2006, 2012) for low energy electrons in the inner magnetosphere
(Ganushkina, Liemohn, Amariutei & Pitchford 2013, Ganushkina, Amariutei, Shpritz &
Liemohn 2013) now operating it online at http://imptam.fmi.fi. IMPTAM computes the
distribution of low energy electrons (10-150 keV), which is critically important for ra-
diation belt dynamics. This seed population is further accelerated to MeV energies by
various processes. The electron flux at these energies is largely determined by convective
and substorm-associated electric fields and varies significantly with geomagnetic activity
driven by the solar wind. Inward electron transport includes also radial diffusion and
excites plasma wave instabilities that give rise to local electron acceleration and electron
precipitation into the atmosphere. It should be noted that the electron flux at these en-
ergies is important for surface charging. At present, the model is driven by the following
parameters provided in real time:

• 1 minute resolution data of solar wind number density, total plasma bulk velocity
and solar wind dynamic pressure (used to calculate the electric and magnetic fields
within the magnetosphere, the resulting particle motion, and to define the boundary
conditions in the plasmasheet - the source of the magnetospheric electrons);

• 1 minute resolution data of the Interplanetary Magnetic Field (IMF) comprising of
three components in GSM coordinates (used in models as previous bullet);

• hourly values of the Dst index (used in the magnetospheric magnetic field models);

• 3-hour Kp index (used in empirical parameterizations for electron lifetimes for rep-
resentation of electron losses);

• 1 minute AE index (used to determine timings to launch electromagnetic pulses in
the magnetosphere to reproduce substorm changes for additional electron accelera-
tion).

IMPTAM is run only in near-real time. If the driving parameters are predicted, the model
can provide corresponding forecast of low energy electrons.

2 Overview of existing models

2.1 Solar wind data

For the model development the solar wind data originates either from the OMNI dataset
or directly from individual spacecraft (WIND, ACE, etc.). The solar wind data in the
OMNI set consist of data from several different spacecraft that have been advected to
a location close to Earth. When original spacecraft data are used for development the
spacecraft–Earth propagation delay will be present.

In real time operation all data come from the ACE spacecraft around the L1 location.
Depending on which type of data that have been used for development the propagation
delay needs to be handled.
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2.2 Forecasting Kp

We have identified 3 models predicting Kp. The first two models have been implemented
for real time operation and are described in more detail in Section 3.

The Boberg et al. (2000) model is a linear combination of two feed-forward neural
networks with tapped delay line inputs, with the two networks specialising on quiet time
and storm time periods, respectively. The inputs are 3-hour averages of solar wind density,
speed, and IMF Bz . These models have been developed using the OMNIweb data set from
the period 1976-1996. The storm level network has been trained on events that contain
at least one value with Kp ≥ 5− and the quiet level model on the complement dataset.
The combined model consists of a weighted average of the outputs from the two models,
with weights determined from the errors of the respective model as function of forecast
Kp value. The models were developed to predict the Kp value for the following 3-hour
interval based on solar wind data at Earth.

The Wing et al. (2005) models are feed-forward multilayered neural network with
feed-back in the hidden layer, also known as an Elman recurrent neural network (Elman
1990). Three models have been developed based on linearly interpolated Kp values from
the original 3 hour resolution to 15 minute resolution, and 15 minute running hourly
average solar wind. The models predict Kp with approximately 1 to 4 hours lead time.

The Bala & Reiff (2012) models consist of a neural networks to predict Kp with lead
times of 1, 3, and 6 hours. The inputs are solar wind speed, magnetic field magnitude,
and magnetic field clock angle, i.e. the angle of the magnetic field in the y− z plane using
the OMNI set. The solar wind data are first transformed using the Boyle index

Φ = 10−4v2 + 11.7B sin3 θ

2
(1)

and forming a vector of delayed inputs. The 1-hour forecast uses hourly averages of the
Boyle index covering the last 8 hours and forecast a 1-hour “oversampled” Kp. It is not
clear if the “oversampling” is linear interpolation or some other procedure. The 3-hour
forecast uses 3-hour averages covering the last 21 hours. Te lengths of the delay lines were
optimised through training and testing.

2.3 Forecasting Dst

There are an overwhelming number of papers that address the forecasting of Dst . This re-
port does not provide a detailed description of each model, but tries instead to summarise
the main points. Some of the models have been implemented for real time operation and
are further described in Section 3.

The first class of models are empirical relations that map solar wind to Dst and
originates from the first-order differential equation suggested by Burton et al. (1975)

dDst∗

dt
= Q− λDst∗, (2)

where Q is the injection rate controlled by the solar wind electric field and Dst∗ is the
pressure corrected Dst

Dst∗ = Dst − b√p+ c, (3)
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and p ∝ nv2 is the dynamic pressure. The constants λ, b, and c are determined from data.
Variants of this model has later been suggested affecting both the injection rate (Fenrich
& Luhmann 1998) and the decay term (O’Brien & McPherron 2000).

The model of Temerin & Li (2006) also belongs to this class, although this model
consists of a very complex function including some 100 coefficients that are determined
empirically. The details of the model are given in Section 3.

Another empirical model aims at predicting the minimum Dst instead of the detailed
evolution (Wang, Shen, Wang & Ye 2003). For the study hourly averaged ACE solar wind
data were used, and data gaps filled in with WIND data. The ACE-Earth propagation
time were not considered. The focus was on intense storms at levels Dst < −50 nT and
Dst < −100 nT. The empirical relation Dstmin = −19.01 − 8.43(−V Bz)

1.09(∆t)0.3 nT
where ∆t is the duration of the driving event, although it is not clear if this parameter
can be unambiguously determined.

Another class of models are based on moving average (MA) filters or autoregressive
moving average (ARMA) filters, or similar. The Vassiliadis et al. (1999) model is a
nonlinear second-order ARMA filter that is driven by 5-minute averaged solar wind data.
It was stated that the hourly resolution of Dst is too coarse to capture essential dynamics.
This led Vassiliadis et al. (1999) to construct their own 5 minute resolution Dst index based
on data from the same geomagnetic stations and smoothing the result with a 25 minute
running average. The inputs to the model are the solar wind measured by the ISEE 3
spacecraft around L1. The solar wind were ballistically propagated to the upstream
magnetopause location and applying a 25-minute moving average. They also consider the
approximate 25-minute delay in the Dst response identified by Burton et al. (1975). The
model is driven by the solar wind pressure and the solar wind electric field V Bs, where
Bs = −Bz when Bz < 0 and 0 otherwise. However, the pressure correction terms also
have a dependence on the level of solar wind activity.

The modelling with the use of neural network in space physics was probably intro-
duced by Koons & Gorney (1991) for a model of geosynchronous electron flux and shortly
followed by Lundstedt (1992). The neural network approach for Dst prediction has then
been used in a large number of papers. Initially static networks (i.e. no recurrent feed-
back) with delayed inputs were developed (Lundstedt & Wintoft 1994, Gleisner et al.
1996). To better model the dynamic evolution of Dst , especially for the recovery phase,
network with feed-back connections were used (Lundstedt et al. 2001, Watanabe et al.
2002, Pallocchia et al. 2006). These models are all driven by the solar wind plasma den-
sity, velocity and magnetic field components. The model by Pallocchia et al. (2006) also
investigated the use of a single, magnetic field driver, motivated by the fact that the ACE
plasma instrument outage during proton events. A large set of different coupling functions
were also investigated by Wu & Lundstedt (1997). The Boyle index has also been used
as input to a neural network, similar to the Kp model, forecasting Dst with lead times of
1 and 3 hours (Bala & Reiff 2012).

The nonlinear autoregressive moving average model with exogenous inputs (NAR-
MAX) was applied to Dst by Boaghe et al. (2001). The model use hourly averages of
solar wind data ballistically propagated from L1 to Earth and make 1-hour forecast of
Dst . The inputs are V Bs, with the history of the past 10 hours, and past values of ob-
served Dst going back 3 hours. Another approach, also using a NARMAX model, used
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wavelet filtered V Bs as inputs (Wei et al. 2004). In this case the past 2 hours of V Bs and
the past 4 hours of Dst were used. Another NARMAX model developed by Zhu et al.
(2007) also included the solar wind pressure term and extended the prediction lead time
to 5 hours. The NARMAX model by Boynton et al. (2011) suggests another coupling
function according to p1/2V 4/3B sin6(θ/2). An 11-year long series of hourly average data
from the OMNI set were used.

Another type of model is a relevance vector machine (RVM) for one-hour forecast
of Dst (Andriyas & Andriyas 2015). The RVM is a general regression technique based
on Bayesian statistics. Hourly averages of solar wind data from the ACE and WIND
spacecraft were used for the model development and evaluation. The solar wind magnetic
field components By and Bz, plasma speed and flow direction (latitude and longitude), ion
density, alpha to proton ration, temperature, dynamic pressure, plasma beta, and daily
F10.7 flux were used as inputs. The forecast is Dst one hour ahead using the measurements
at spacecraft location, i.e. no explicit propagation were performed and thus part of the
lead time is due to the propagation delay.

Six different models are compared on 63 intense storms in the work by Ji et al. (2012),
where intense is defined as having an event with at least one hour with Dst < −100 nT. In
the study, all models were driven by hourly averaged ACE solar wind data and not con-
sidering the ACE-Earth propagation. They used four metrics for the comparison: linear
correlation; RMSE; difference between observed minimum Dst and predicted minimum
Dst ; difference between time of observed minimum and time of predicted minimum. The
result was that the Temerin & Li (2006) had the overall best performance, and that the
same model was the best model for range −200 < Dst < −100 nT, while three models
(Wang, Chao & Lin 2003, Temerin & Li 2006, Boynton et al. 2011) where comparable for
Dst < −200 nT.

2.4 Forecasting AE

The prediction of AE (> 0), or AU (> 0) and AL(< 0), where AE = AU − AL =
AU + |AL|, have been addressed in a number of papers, but currently only one model is
operational.

The Goertz et al. (1993) model consists of three first-order differential equations,
one for AU and two for AL, with 6 free parameters that are quantitatively determined
from observed solar wind, AL, and AU data. The model is derived from basic physical
reasoning. The input is the east-west convective electrical field Ey = −V Bz modulated
to be 0 for northward Bz, i.e. in principle Bs is used. At the time, only solar wind ISEE 3
data with 1-minute resolution IMF and 1-hour resolution velocity were available.

Hernandez et al. (1993) used two methods, a linear filter and a neural network, to
make single step predictions of AL based on either solar wind only or solar wind and past
values of AL. The temporal resolution was varied between 2.5 to 30 minutes. The solar
wind input was the eastward electric field derived from V Bs.

Vassiliadis et al. (1995) used a non-linear filtering approach based on a set of locally
linear MA filters or ARMA filters to predict AL. Ttwo variants were studied: using solar
wind only (non-linear MA filter), and solar wind and past AL (non-linear ARMA filter).
The filter coefficients were optimised for single step predictions using 2.5 minute resolution
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data, and using past predicted AL the model was iterated to provide 4 hour prediction,
assuming known solar wind data.

Gleisner & Lundstedt (1997) used nonlinear time-delayed feed-forward neural networks
to predict AE . The input data were 5-min averaged solar wind data, V , n, and the
IMF components By and Bz, from the spacecraft IMP 8 during 1973-1974. The neural
networks consisted of one hidden layer, with 8 hidden nodes, and the input data were
given as samples with a time window of 100 minutes. A comparison between individual
solar wind variables and various coupling functions , such as e.g. V Bs, was also performed
as well as a comparison to linear neural networks. There is no mention of lead time, but
it is our understanding that they used time shifted AE data to the magnetopause as in
Gleisner & Lundstedt (2001).

Gleisner & Lundstedt (2001) again used a neural network, but this time an Elman
recurrent network. The solar wind data set is similar to the previous study, with V , n,
and Bz, as well as as the AE but with a time resolution of 2.5 minutes. In this study, the
AE data were time shifted, because of the solar wind travel time to the magnetopause
from IMP 8. The network has 4 hidden nodes (and therefore 4 context nodes). Due
to the dynamical behaviour of the recurrent network, no time delayed input data were
needed, and therefore only 3 input nodes were used. A comparison was also made with
the previous study.

Another neural network using time delayed Boyle index as inputs has been developed
to forecast hourly average AE with 1 and 3 hours lead time (Bala & Reiff 2012).

Amariutei & Ganushkina (2012) used an ARMAX based neural network model to
forecast the AL index. Input data consists of V Bs with 1 minute resolution, from the
OMNI dataset for the whole year 1998, i.e. propagated to Earth. In this study, the
emphasis was on accurate forecasts of substorm onsets, therefore the input data were
smoothed using a moving average of 7 minutes. We assume that a higher temporal
resolution is desirable but that the 7 minute average makes a good compromise between
predictability and resolution. The exogenous inputs represent the past prediction errors.
The network consists of two hidden layers, the first with seven nodes and a nonlinear
activation function, and the second with three nodes and a linear activation function.
Forecast lead times between 10 and 60 minutes were tested.

The AE model by Luo et al. (2013) is similar to the Temerin & Li (2006) model and
consists of an empirical relation with a large number of terms. The model uses 10-minute
averages of solar wind data and interpolated daily 10.7 flux, and predicts AU , AL, and
AE with 10 minute lead time. The AL model builds in the model in Li et al. (2007) which
also introduces an empirical time shift of about 7 minutes that is added to the lead time.
The model is further described in Section 3.3.1.

3 Operational forecast models

A survey of currently available operational models that forecast the indices using L1 solar
wind data has been carried out. The following models have been identified for each of the
three indices. A short description of each model is provided and references are given.
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3.1 Kp models

Two providers of Kp forecasts have been identified.

3.1.1 Swedish Institute of Space Physics

Two different models with different lead times are operational at IRF-Lund (Boberg et al.
2000) (Figure 1). The models use solar wind plasma and IMF as inputs. The models are
feed-forward neural networks with tapped delay line inputs.

The inputs are 3-hour averages of solar wind density, speed, and IMF Bz . The models
have been developed based on the OMNI dataset and data covering the years 1976–1996
were selected. The OMNI set consists of hourly averaged solar wind data that have been
advected from the spacecraft location to just upstream of Earth.

Each model consists of two sub-models specialised for the prediction of quiet periods
and storm periods, respectively. The storm level model has been trained on events that
contain at least one value with Kp ≥ 5− and the quiet level model on the complement
dataset. The combined model consists of a weighted average of the outputs from the two
models, with weights determined from the errors of the respective model as function of
forecast Kp value.

The models were developed to predict the Kp value for the following 3-hour interval
based on solar wind data at Earth. The models implemented for real-time operation do
not specifically handle the 10–80 minutes additional lead time given by the ACE location
at L1. The forecasts are always provided for the standard Kp intervals 00, 03, . . . , 21.
The models are run with a cadence of 1 hour which means that the forecast lead time
varies between 0 and 2 hours based on the Kp timestamps, or 3 and 5 hours as Kp extends
over three hours, and that the forecast Kp is only final for the 3-hour forecast. Another
model is also implemented that makes a now-cast of the current Kp value.

3.1.2 Space Weather Prediction Center

Three different Kp forecasting models, with different inputs and lead times, are imple-
mented at SWPC (Wing et al. 2005) (Figure 2). Each model is a feed-forward multilay-
ered neural network with feed-back in the hidden layer, also known as an Elman recurrent
neural network (Elman 1990).

The models have been developed based on linearly interpolated Kp values from the
original 3 hour resolution to 15 minute resolution. The interpolation is unphysical and
does not add any new information, however, it may be motivated from the aspect of
having a more responsive system providing forecast with a higher cadence.

For the model development, the solar wind parameters are ballistically propagated
from L1 to Earth using measured solar wind velocity. Then, the parameters are resam-
pled to hourly running averages with a 15 minute cadence. As the solar wind input is
propagated to Earth, the prediction lead times defined in the models below should be
interpreted as the sum of L1–Earth propagation time and possibly a lead time due to
magnetospheric processes or in statistical terms.

One model predicts Kp “approximately 1 hour ahead” using solar wind plasma, IMF,
and nowcast Kp as inputs. The actual lead time is determined from the solar wind
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Figure 1: IRF-Lund Kp forecast at 2015-04-01 08:49 UT.
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propagation time, thus the “1 hour” should be interpreted as anything between 10 minutes
and 80 minutes. The nowcast Kp is derived from a few geomagnetic stations that provide
near-realtime magnetic measurements (Takashi et al. 2001).

The next model is identical to the above except that the prediction lead time is ap-
proximately 4 hours, which should be interpreted as solar wind travel time plus 3 hours,
thus in the range 3 hours and 10 minutes to 4 hours and 20 minutes. The stated perfor-
mance of this model can in part be attributed to magnetospheric processes and in part
to statistical correlations. This is quite visible in Figure 5(h) in Wing et al. (2005) where
the forecast Kp lags behind observed Kp.

Finally, the last model use only solar wind as inputs, which is motivated by the possible
lack of near-realtime Kp data. The model provides “1 hour ahead” forecast which we again
interpret as 10-80 minutes lead time. From an evaluation point of view, this type of model
also has the advantage that there is no autocorrelation feeding back as the target quantity
is not used as input.

Figure 2: SWPC Kp forecast at 2015-04-01 08:49 UT.

3.2 Dst models

Four providers of Dst forecasts have been identified.
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3.2.1 Swedish Institute of Space Physics

The IRF-Lund Dst forecast model consists of a feed-forward neural network with internal
feed-back, an Elman network, driven by solar wind data (Lundstedt et al. 2001) (Figure 3).

The inputs are 1-hour averages of solar wind density, speed, and IMF Bz. For the
model development the hourly average data from the OMNI data set were used, again
noting that the in this set the solar wind data have been advected to Earth. The target
output is Dst , also from the OMNI set, for the next hour.

In real-time operation the hourly averaged solar wind data are propagated to Earth
using the solar wind speed and the average L1–Earth distance of 1.5 · 106 km, which
provides additional lead time between 10 to 80 minutes. The models are run with a
cadence of 10 minutes.

Figure 3: IRF-Lund Dst forecast at 2015-04-01 08:49 UT.

3.2.2 Laboratory for Atmospheric and Space Physics, USA

The Dst forecast model implemented at LASP consists of an empirically determined
difference equation driven by solar wind data (Temerin & Li 2006).
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The inputs are 10-minute average solar wind density, velocity component along Sun-
Earth line, IMF By and Bz, and total magnetic field. Data come from the WIND and
ACE spacecraft.

The model is a difference equation with a sum of 6 terms, each term consisting of
non-linear expressions with estimated parameters. There are in total more than 100 free
parameters and they are basically found through manual trial-and-error. The RMS error
between model Dst and target Dst is minimised by individually changing each parameter
by a small amount. However, it is not clear how the initial set of parameters were found.

In real-time operation 10-minute averages of ACE solar wind data are ballistically
propagated to Earth using a constant ACE-Earth distance of 238.6RE = 1.519 · 106 km,
and the interpolated to 10-minute timestamps. The model is typically run three steps
into future, i.e. 30 minutes. This suggests that the model has a prediction lead time of
40 to 110 minutes.

Figure 4: LASP Dst forecast at 2015-04-01 08:49 UT.
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3.2.3 National Institute of Information and Communications Technology,
Japan

The NICT operational model consist of an Elman neural network driven by ACE solar
wind data (Watanabe et al. 2002).

Three different models have been tested with different inputs and training sets and the
optimal model that was selected for operation have the following inputs: density, speed,
IMF B vector and B magnitude and predicts two hours ahead. The two hours assumes
that the ACE-Earth travel time is always one hour and that the magnetospheric response
is one hour.

The implemented model is run with a cadence of one hour using 1-hour average ACE
solar wind data.

Figure 5: NICT Dst forecast at 2015-04-01 08:49 UT.

3.2.4 Moscow State University

The MSU model consist of a neural network with tapped delay line. The model is not
described in one single paper but it is described at the web page and partly in Dolenko
et al. (2014).
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The inputs are hourly averages of ACE solar wind plasma density, speed, temperature,
IMF B vector and magnitude B, and past values of Kyoto quick-look Dst .

The operational model runs with a cadence of 30 minutes a few minutes after the
half hour or the full hour. The half-hour forecast is preliminary and is later replaced by
the full-hour forecast. The stated forecast lead time is 0.5 to 1.5 hours and there is no
handling of the ACE–Earth propagation.

Figure 6: SINP Dst forecast at 2015-04-01 08:49 UT.

3.3 AE models

Only one model currently exists.

3.3.1 Laboratory for Atmospheric and Space Physics

The AE model consists of an empirically derived set of equations (Luo et al. 2013) that
builds on a previously developed model for AL (Li et al. 2007) and is similar to the Dst
model (Temerin & Li 2006).

The inputs are 10-minute averages of the solar wind density, speed, IMF B vector
and magnitude B, and 10-minute interpolated values from the daily F10.7 index. The
solar wind data come from the WIND and ACE spacecraft. For model development the
solar wind data were propagated from the spacecraft location and then interpolated to
10 minute averages.

There are two models consisting of difference equations, each with a sum of 5 terms
for AL and AU respectively. The indices are also 10-minute averages and the forecast is
made for the next time stamp, i.e. a 10-minute forecast. The outputs from the two models
are then combined into AE = AU − AL. After comparison with the measured ALindex,
a time delay of 7.30 minutes were included to the model output. There is about 100 free
parameters in each model that are empirically found through a manual procedure.
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Figure 7: LASP AE forecast at 2015-04-01 08:49 UT.
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4 Discussion

4.1 Verification and model selection

From the survey carried out in this report it is not possible to select the “best” model,
or models, based on the published metrics that have been used for verification. There
are several reasons for this. Firstly, there are a large number of metrics that can be
used, several of them overlapping in what they measure, and the interpretation is not
always clear. The report by Wintoft et al. (2011) contains an overview of metrics and
approaches applied in space weather. There is also no theoretical guidance on how to
select appropriate metrics, although the series of papers by Murphy & Winkler (1987),
Murphy (1988), Murphy et al. (1989), Murphy (1993, 1996), Murphy & Wilks (1998)
provides a deeper understanding of the problem. Secondly, it has to be very clearly
defined what a model tries to forecast and develop a metric that captures that aspect.
E.g., the Dst index goes typically through three phases during a storm: pressure related
initial phase, reconnection related main phase, and the recovery phase. Each phase has
different dynamics with different statistical distributions. A metric containing all phases
may provide good scoring for a model that mainly captures the recovery phase although
other models may be better at the main phase. The Geospace Environment Modeling
(GEM) challenge for Dst (Rastätter et al. 2013) compares empirical models and MHD
models using four different metrics. The models were run to predict Dst for for different
time intervals, each containing storms at different levels. Depending on choice of metric,
the models were ranked different, illustrating both the problem of interpretation of metric
and that different models may perform better for certain phenomena. Another issue is
the choice of events which may bias the model selection.

4.2 Sampling and timestamps

All datasets used here, whether it is solar wind data or indices, are time series data,
i.e. each value has an associated time stamp. At the same time, each value has been
determined over some time interval ∆t and there can be an ambiguity in whether the
time stamp represents e.g. the beginning, the centre, or the end of the time interval.
However, in most cases the time stamps mark the beginning of each interval, and this will
also be used here. This is important to keep in mind for both real time monitoring and
forecasts. E.g., even if the measurement or derivation of some quantity can be made in
real time, the timestamps will lag between ∆t and 2∆t from real time. We define this as
the sampling lag

τs ∈ [∆t, 2∆t]. (4)

The three indices capture phenomena at different time scales. The official Kp index
has a temporal resolution of three hours and is defined for the intervals 00-03, 03-06,
06-09, 09-12, 12-15, 15-18, 18-21, 21-24 UT. For a time series of Kp values each value is
associated with timestamps 0, 3, 6, 9, 12, 15, 18, and 21 according to the definition above,
and thus has a sampling lag of τs ∈ [3, 6] hours.
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The official Dst index has a resolution of ∆t = 1 hour with timestamps at 00, 01, ...,
23 UT and thus a sampling lag of τs ∈ [1, 2] hours.

The official AE index has a resolution of ∆t = 1 minute with timestamps at 00:00,
00:01, ..., 23:59 UT and thus a sampling lag of τs ∈ [1, 2] minutes.

Naturally, the sampling lag also affect the interpretation of timestamps of the input
data. Thus, a model that provides forecasts in real time will have input data that lags
behind real time with the sampling lag, if no other lags are present, and this needs to be
explained in a real time service.

A forecast model provides an estimate of the target data with a lead time of τl. If the
input and target sample intervals are equally long (∆t), and if the forecasts are issued at
the timestamps of the observations, then the timestamp of the forecast will be τl − ∆t
ahead of real time, and the forecast quantity will be valid for the interval [τl −∆t, τl]. If
the forecasts are issued at other times the valid time interval will be [τl− τs, τl− τs + ∆t].
If the input sample interval ∆tin and output sample interval ∆tout are not equal then
the forecast interval becomes [τl − τs,in, τl − τs,in + ∆tout]. There may also be further lags
introduced if the forecast quantity is forced to certain timestamps, like e.g. the three-hour
timestamps 00, 03, ..., 21 of Kp.

Another issue is that any filtering applied to the input data will increase ∆tin and
affect the forecast lead time, something that may be missed during model development
and testing.

4.3 Prediction lead time

Plasma and magnetic field data measured at L1 offers a forecast lead time between 10
to 80 minutes for a range of speeds between 300 and 2000 km/s before the disturbance
reach the magnetosphere. Using minimum and maximum distances to ACE of 1.4 · 106

to 1.6 · 106 km and magnetopause location between 10 to 20 RE gives the travel time
as function of speed shown in Figure 8. It is often quoted in the literature that there
is about a one-hour lead time from the L1 location. However, as the figure shows, this
is only true for speeds, in the best case, less than about 500 km/s, but more typically
around 400 km/s.

Figure 8: ACE–magnetopause travel time as function of speed.
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As the indices are global there is no local time effect that can be exploited for additional
lead time. When the interplanetary disturbance reach the magnetopause all indices will
react immediately. However, the indices respond differently.

The Kp index is a weighted measure of the range of variation of the horizontal compo-
nent of the magnetic field (K index) collected from several globally distributed stations.
The physics generating the disturbance is not revealed in the Kp index as different phe-
nomena like sudden impulses, pulsations, and substorms are lumped together.

The Dst index is more targeted to a specific magnetospheric system than the Kp index,
although it has contributions from several different phenomena. The start of a Dst storm
usually starts with an increase during the initial phase associated with magnetopause
current caused by the direct compression from the solar wind. Then there is a short
delay for the ring current to build up causing the negative main phase. Then, if no more
disturbances arrive in the solar wind, the ring current decays with a gradual increase of
Dst to zero-level over approximately 12–24 hours. The different phenomena are associated
with different prediction lead times.

The AE index has the highest temporal resolution and monitors activity with contri-
butions mainly from auroral latitudes. Similar to Kp, AE is a range index formed by the
difference between AU and AL, and thus is non-negative. The temporal resolution enables
the identification of sudden impulses, pulsations, and substorms. As before, the sudden
impulses follow immediately after the solar wind disturbance hits the magnetopause while
there can be a shorter delay before the substorm sets in. As soon as the substorm is over
AE falls to low values.

Generally, higher levels of geomagnetic activity are associated with high solar wind
speed. Figure 9 shows the estimated CDF for 3-hour maximum solar wind speed simul-
taneous with Kp ≥ 7. About 50% of the samples are associated with speeds greater than
600 km/s, indicating propagation lead time of 40 minutes or less.

Figure 9: Estimated cumulative density function (CDF) as function of solar wind speed
for Kp ≥ 7.
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5 Conclusions

There are two broad categories of models, models based on simplified physical reasoning
and models based on data feature extraction algorithms. Naturally, the division is not
clear-cut and there is a mix of both approaches in both categories. The first approach
provides guidance to the parameter selection of the second approach, while the second
approach provides the possibility of relations that more exactly describe the solar wind–
magnetosphere mapping.

The models can be further categorised into two classes, depending on whether they
use time-lagged target parameter as input or not. As the L1–Earth forecast models only
provide short-term forecasts, in the best case a few hours, it is important to properly
evaluate the effect of the autocorrelation in the target time series when the models are
validated. A subset of the identified models that are available to the team will be verified
in D3.3.

The actual prediction lead times for published models are not always clearly defined.
Also, the lead time needs to be physically motivated and understood. From solar wind
measurements around L1, a lead time of 10-80 minutes is possible due to the propagation.
Another few minutes will be present from the bow shock–magnetopause propagation.
Then the magnetospheric substorm and storm processes will add another ≈ 30 minutes.
There are also local time effects that can provide additional lead time, however, as the
considered indices are global that effect can not be exploited. Longer lead times are not
physically comprehensible but may work under the assumption that nothing changes in
the solar wind.

All models that rely on both ACE plasma and magnetic field data will fail during
solar storms associated with high proton fluxes as the plasma instrument becomes in-
operational. Several of the largest geomagnetic storms occur during those events. It will
be interesting to see how the DSCOVR spacecraft will operate during those conditions.

Several of the models provide “preliminary” forecasts, which means that the forecast
value for a certain timestamp in the future may change when the timestamp moves to the
past. This means that plots with observed and forecast data will look better than they
actually are.

A crucial point is how the models will behave during extreme events. One problem
is of course related to the ACE plasma instrument outage during proton events, which
hopefully will be solved with the DSCOVR spacecraft. However, even under the assump-
tion that the solar wind data will be correct the models may fail due to the fact that they
may be operating in a domain they were not developed for.
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