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Key Topics

e NARMAX Methodology
¢ NARMAX method
¢ OFR-ERR algorithm

(orthogonal forward regression and error
reduction ratio algorithms)

e Application
Forecast of geomagnetic indices
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Part 1

Linear and Nonlinear Models
of
Dynamic Systems
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Dynamic System Identification (1)

H N 9
— Learning From Data T Sheffield.
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For a system where the model (both the model structure and
the associated parameters) are known, one can directly
analyse the system using the given model.

If, however, the model structure of the system is unknown,
but only some observational data are available, how can we
do to uncover the inherent dynamics of the system?

Input Output
System

u(t) y(®
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Dynamic System Identification (2) % T ity
. o) Of
— A Comprehensive Procedure S Shoiola

- Could be any types of data or
Observational data @ signals (often need pre-procession)
: - Noise analysis, scaling,

Data pre- processmg @ normalisation, etc.

Try and use a most
| Model structure determination (3) appropriates )rlrg)c&c:(atg(ructure

LS, NLS, or other }

Model identification and parameter estlmatlon@ opimization methods
I (6.9.GA, PSO, etc.)
| Model validation ~ (5)

Is the identified
model valid?
Yes

Applications - system simulation; system analysis;

system control; prediction/forecasting, etc.
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Model validity test is critically
important — an invalid model is
good for nothing
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ARX and ARMAX models

* ARX model
ARX — Auto-Regressive (AR) with eXogenous inputs
y(k)=ayk-)+a,y(k-2)+---+a,y(k—p)
+hu(k 1) +b,u(k —2) + -+ b u(k —q) +e(k)
* ARMAX model
ARMAX — Auto-Regressive (AR), Moving Average
(MA) with eXogenous inputs
y(k)=ay(k-1)+a,y(k-2)+---+a,y(k-p)
+ bu(k 1) +b,u(k =2) +---+b,u(k —q)
+e(k)+ce(k-1)+ce(k—-2)+---+c.e(k—r)
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NARX and NARMAX models

* NARX model
NARX - Nonlinear Auto-Regressive (NAR) with eXogenous inputs

y(k) = f(y(k-1),y(k—2), -, y(k—p),
u(k —2),u(k —2),---,u(k —q)) +e(k)

* NARMAX model
NARMAX - Nonlinear Auto-Regressive (NAR), Moving Average

(MA) with eXogenous inputs
y(k) = f(y(k-1),y(k=2),---, y(k - p),
u(k=2),u(k —2),---,u(k —q),
e(k-1),e(k-2),---,e(k—r))+e(k)

®* AR, ARMA, ARX, and ARMAX are special cases of NARMAX.
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Polynomial NARX Model (1)

For the NARX model
y(k) = f(y(k=1),y(k=2),---, y(k = p),u(k =1),u(k = 2),---,u(k — q)) +e(k)

Letx.(k)z{y(k_p’ telep
! uk—-j+p), p+i<j<n, (n=p+q)
X(K) =[x (K), %, (K), -+, %, (K)T'

Then, y(k) = f(x(k))+e(k) = f(x,(K), X, (K),---, X, (K)) +e(k)

e.0. y(k)=f(y(k=1),y(k-2),uk-1)) = f(x(k),x,(k), %, (k))
=6y + Ox(k) + 0,x,(k) + &,%(k) % (k) =y(k-1)
+0x (%K) + X% (K) + Gx ()X K) |0
0,050 + 63,(0%K) + 6x,K)%K)
+e(k) 4 3 3

or y(K) =6, +D.6,x (K)+>.>" 6, x (K)x, (k) + e(k)

) =L i,=i;
- (€9
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Polynomial NARX Model (2)

® One approach to approximate the unknown function f is
Y(K) = £04,(K), % (K), -+, X, (K)) +e(k)
=fo+ Z fi (% (k) + Z fii (X (K), % (k) + -+

1<i<n I<i<j<n

2 B, (6, (0%, (K)o (K))+e(K)

1<ij<--<i, <n

® Here the aim is to approximate a high-dimensional
function f using a set of lower dimensional functions.

X(K) =D (K), X (K)o, ()T -m y()
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Polynomial NARX Model (3) P U

* Polynomial approximation
y(k) = £ (x,(K), %, (K), -, %, (k) +e(k)
=00+ 2,0,%, ()2 226,,%, (k)% (k) ++-

ip=1 ip=1 iy =i

F330, % K%, ()%, () +e(k)

=1 =i, 4

e An example (a model for Dst prediction)
Dst(k) = 0.02486 +0.98368Dst(k —1)

~0.92130 [Dst(k —1)J xVBs(k —1)
+0.51936 [Dst(k —1)]x[Dst(k - 1) xVBs(k — 2)

—1.25977Dst(k —1) x[VBs(k —1)]* xVBs(k —2)
HL Wei, SA Billings & MA Balikhin, J. Geophysical Research-Space Physics, 109, A07212, 2004.
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® Some KEY issues in NARX modelling
¢ How to determine the model order?

y(k) = f(y(k-1),y(k=2),--, y(k = p),u(k =1),u(k -=2), -+, u(k - q)) +e(k)
¢ How to chose model variables?
¢ How to determine nonlinear degree of the model?

Y0 =65+ 36,5, 00+ 63, %, (), (K)-+--

¢ How to determine model terms/regressors?

¢ How to determine model size/length/complexity?

| %)
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Polynomial NARX Model (5)
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® Advantages of the polynomial NARX model

= Widely applicable and applied

= Tractable: linear-in-the-parameters form; easy to operate
= Computational efficient: easy to compute

= Transparent: significant model terms and variables are clearly
known

= Less sensitive to noise and thus usually generalises well

= Physically interpretable: can be related back to the
underlying system

= Frequency domain analysis of nonlinear systems is allowable

by mapping a time-domain model into the frequency domain
{' ES \PROGRESS @'@ 12/45 (Dr H.L. Wei)
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Challenges of Black-Box Modelling
for Dynamic Systems

* Model variable selection and determination

* Model structure determination

Model term selection

Model parameter estimation

Model validity test

Model interpretability

#= \PROGRESS C'D
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Part 2

NARMAX Model
Identification and Construction
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Part 2A Orthogonal Basis

Signal Approximation with
Orthogonal Regression
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Projection onto Orthogonal Vectors(1!

Let Xy, Xy, ..., X, be m orthogonal vectors defined in n-
dimensional space R"; and y a signal in R".
Assuming that we want to approximate y using Xy, X, ..., X, &
conventional approach is:

Y =C X+ CXp + ... HC X+ €
where c,,C,,...,C,, are parameters and e is approximation error.
Note that e is assumed to be independent of x;,X,,..., X,

§

We can show that <x,y>=c, <x,x > = ¢=—w¥= %Y

<KX > XX

<X, Y> XY
<Xy, X > XX,
<Xy Y > X3y
<X X > XX

{' E=PROGRESS (C:'i)) 16/45 (Dr H.L. Wei)

<Xy, Y >=Cy <Xy, X, > = €y =

<Xy Y >=Cp <Xy, X, > = C, =
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We can also show that
<Y, Y>=cF<xp,x >+ <x3,x> +o A CH < XpxXym > t<ee>

That is,

Y'Y =CIX X +CX) X, +...+CEX X +e'e

or

Iy IP=cf 1% P +¢5 1%, I +..+co 1 X, [P+l e
So,

el :1_C2||X1||2 2% P e || X, II°

Iyl Syl lyIP "yl

B £ \PROGRESS CC':D)
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Projection onto Orthogonal Vectors(3!

el XA o lI% I 2 1% 1P

——=1-cC -C —..—C,,

IylIF CyIE P Iyl
T T

Recalling that ¢, = kay =AY W —12,..m, we have

XX 1% P

llell? _ 1_( xJy >2||x1||2_< xIy >2||x2||2_ _( xhy >2||xm||2
112 o ll?) Alyl1Z - Nllx2ll?) Alyliz 7 \llxmll2/) 1IyI?

R €6 ) LN €7 5 L € 5 &

S bl PR el Pyl (ol 12112

=1 - ERR, — ERR, — - —ERRy,
where ERR, (k=1,2 ...,m) is called the kth Error Reduction
Ratio, indicating how much (in percentage) of the
approximation error can be reduced by the kth vector.
Note that 0 < ERR, < 1,and }ERR, < 1
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X, =0
1

C, = le_l c_ﬂ_z c_Ty_5,
X1X1 XX X3 Xg
S0, y =X+ 2X, + 5Xg

A simple example 1

1
0,
0

ERR BN CZ69 M 0.0333 X accounts for 3.33% of the
! |Ix1II2|IyII2 30

variation in y
ERR, = M = % -0.1333 x,accounts for 13.33% of the
[le2lZ[lyllz - 30 variation in y

ERR; 2% = 25-0.8333 Xgaccounts for 83.33% of the
[lxsliZ[lyliz - 30 variation in y

' S PROGRESS (C:'@ 19/45 (Dr H.L. Wei)
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Question: Knowing X4, X,, X3 and y, and assuming that we
want to choose only one from X,, X,, X5 that best approximates

y, which one we would use? 1 1 0 0
y |: :l X1_|: | X2_|:1 }’ XS_{O]
0 1

=21,
5

An alternative question: Assuming that we want to choose a

minimal subset of {x,, X,, X3} that accounts for no less than

80% of variationiny (i.e. ‘overall ERR > 80%”), which and

how many vector(s) should be used?

What if we want to achieve approximation that accounts for
no less than 90% of the variation iny ?

{' E=PROGRESS (C:'i)) 20/45 (Dr H.L. Wei)

What if we use only two? 0
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Part 2B Non-orthogonal Basis

Forward Orthogonal Regression
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Forward Orthogonal Regression (1)

We use a simple example to illustrate the forward orthogonal
process. We now have 3 linearly independent vectors,
1
2|
5

together with a 4t observed signal: 17[-17To
X = JO0 1y, ¥y=
o Step 1. 20| 21

20l 0
Recalling the definition of the Error Reduction Ratio (ERR),
we check the ERR index for each of the 3 vectors in S:

_ 6Dyt s
T
erry=rC2)__ — 2754
[z l12[I¥112 50 _
(Ty) . So, we choose either the
erry=r——— = -=0.8333 I%or 3d vector.

|23 112|ly 112
FERASOS
22/45 (Dr H.L. Wei)
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Forward Orthogonal Regression (2)

 Step 2. We choose x; as the first orthogonal vector:

0
0 =%=0
1

Step 2 searches for a new vector to join g, .

(we know that ERR, = 83.33%)

If X, joins q,, we have If X, joins q,, we have
0 0
q1=X3=0 ) q1:X3:0 )
1 1
. 1 0] 1 T -1 ) 0| [-1
vex-2kg |2 —% -2 |, h&—%qﬁ ~Zlo|=| o
G G 2 1 0 8 2 1 0
T \2 Ty)?
VY 25 6670 SIS U ) S

(VYY) 30

e =————=
(v'v)(y'y) 150
m 23/45 (Or H.L. Wei)
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Forward Orthogonal Regression (3)

Now we have 2 orthogonal vectors:

0 1
q,=|0 | (ERR,=8333%), 0,=|2 | (ERR,=16.67%)
1 0

Since ERR;+ ERR, =100%, meaning that the two vectors

g, and g, totally explain the variation of y. So, there is no
need to search further.

1 -1 0 1
X={21] 0|0 y=|2|
We can work out that, 20l 2|1 5

y =50;+ gyand y =x;+ 3X3

{' ES PROGRESS (C:,':D) 24145 (Dr H.L. Wei)
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Forward Orthogonal Regression (4)

e Ageneral idea
Let Xy, X, ..., X, be m vectors defined in n-dimensional space
R"; and y a signal in R".

Note that X, X,, ..., X, can be linearly dependent or there is
some multicollinearity among them.

We want to find an optimal or sub-optimal subset S of {x,, X,,
..., X}, such that y can be satisfactorily represented by
elements of S.

Note that for the above scenario, the ordinary least squares
method may not work well.

D
B \PROGRESS CC ®) 25/45 (Dr H.L. Wei)
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Forward Orthogonal Regression (5)

¢ A general procedure
e Step 1. Calculate ERR index for each of x;, x,, ..., X, :

2
(xiy)
erry=r——————,k=12,....m
K 1xel 12| 1yv112 e

Choose the vector that has the maximum ‘err’ as the 1t
orthogonal vector (q;) .

 Step 2. Orthogonalize each of xy, X,, ..., X, (except that
selected in Step 1) with q,; work out ERR value for each
of the orthogonalized vectors. Choose the one that with the
maximum ‘err’ as the 2" orthogonal vector (q,) .

o Step 3,4, .... Repeat the same process as in Step 2, until a
satisfactory approximation is achieved.

The above procedure is called orthogonal forward regression (OFR) or
orthogonal least squares (OLS) algorithm

13
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¢ Why Using OFR rather than ordinary least squares?
Suppose we have a data tabular at the bottom, and we want to find

a general regression model to characterize the dependent relation
of y on the three independent variables Xy, X,, Xj:

Y=BotBrXe X HBXgt BaX Xy HBsX XoHBeXy X TB7XoXo H BeXoXg T BgXaXs

X, [ X, [X; |Y | Ordinary least squares failed to detect the correct
2 |2 I8 |8 model: ,=0, p,=-0.2121, p,=0, f;=2.5682,
0 [0 [0 |o Bs=0, ps=0, e =-0.1212,

1 12 |5 |6 B;=0, pg=-0.5455, p,=-0.0227.

1 |1 2 |3.5 | The OFR algorithm, however, perfectly detect the
2 |2 (8 |8 correct model (with only 3 terms), step by step:

1 |1 |2 |35 | Stepl:x, wasselected (ERR=96.154%, f,=1)
3 |2 13 |10 | Step 2:x, was selected (ERR= 3.693%, f,=2)

o |1 1 |2 I Step 3: x,x, was selected (ERR= 0.153%, f5=1/2)
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Part 2C Dictionary Learning

For NARXMAX Model Identification

{' ES PROGRESS (C:,':D) 28/45 (Dr H.L. Wei)
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in advance. We use a simple example to illustrate the basic idea:

K) = f(y(k-1), y(k-2), u(k-1)) + e(k y(k=Dy(k-1)y(k-1)
et oy ATy
D, ={y(k-1).y(k-2uk-ny, ~ |YlDykiukD

y(k-1)y(k-2)y(k-2)
y(k-1)y(k-2)u(k-1)
y(k -Du(k —Du(k -1)

y(k-1)y(k-1)
y(k-1)y(k-2) D, =
y(k-Du(k-1)

D, = : y(k-2)y(k-2)y(k-2)
ylk=2)y(k=2) y(k=2)y(k-2)u(k-1)
y(k—2)utk—1) y(k-2u(k-1)y(k-1)
u(k -u(k -1) u(k —L)u(k —1u(k -1)

We can use D, D;, D, and/or D4 to create vector sets, and then apply the
OFR algorithm to select important vectors (ie model terms, one by one),
and build a compact or sparse model.

29/45 (Dr H.L. Wei)
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Part 3

NARMAX Model Application
for
Forecasting Geomagnetic Indices

{' E= \PROGRESS CC':D) 30/45 (Dr H.L. Wei)
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Part 3A

Kp Index Prediction
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Kp Index Prediction (1)

Variable |Description Input or
output

\Y Solar wind speed [km/s]

Bs Southward interplanetary magnetic field [nT]

VBs solar wind rectified electric field [mv/m] [VBs=V-Bs/1000] Input

p Solar wind pressure [nPa]

p1/2 Square root of solar wind pressure

Kp Kp index (variable of interest) Output

e Training data: Hourly data, January —June, 2000

e Test data: Hourly data, July — December, 2000

The identified model:

Kp(k) = 0.325543Kp(k—3) — 0.000043V(k—1)-p*2(k—1) + 0.673034Bs(k—1)
—0.164093Bs(k—1)-pY2(k—1) — 0.000003V?2 (k—1)
+0.000217V(k—-1)-Bs(k—2) —0.006701Bs(k—1) - Bs(k—2)
—0.005810Bs(k—1)-p(k—2)  —2.179360 + 0.753122 p¥2(k—1)
+0.006105V(k—1) — 0.387292VBs(k—1)+0.136271VBs(k—1)-p¥2(k—1)
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Part 3B

Forecasting the daily averaged flux electrons
with energy > 2MeV at Geostationary orbit

D
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Forecast of Electron Flux (1) |
at the Radiation Belt X Sheffield.

As a case study, we use the following data to train models:

Output variable:

Daily data of 120 days (22" May 1995 - 17t Sept 1995) for
electron flux at the radiation belt (>2MeV).

(data were from GOES 7 & 8 satellites)

Input variables:
Hourly data of 120 days (22" May 1995-17% Sept 1995)
V,,, (solar wind velocity)
VBs (solar wind rectified electric field)
Pdyn (flow pressure)
Sym-H index (symmetric part of disturbance [nT])
Asy-H index (asymmetric part of disturbance [nT])
(data were from ACE & WIND spacecraft and geomagnetic
indices)

36/45 (Dr H | el)
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Forecast of Electron Flux (2)
at the Radiation Belt
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Our objective is to build models from these hourly and daily

data, and use the models to forecast the future behaviour of
electron flux.

Data Observed Today and Predict Tomorrow’s
Some Previous Days
p—

Behaviour

V., (solar wind velocity) Flux of
VBs (rectified electric field)

Pdyn (flow pressure) ﬂﬂ:> electrons

Sym-H index (>2MeV)
Asy-H index

Daily recorded Electrons

e

S

37/45 (Dr H.L. Wei)
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Forecast of Electron Flux (3)
— MISO NARX Model

L. P Sheffield.

e \We have 5 input variables (V, VBs, P, Sym-H, Asy-H),
and 1 output variable (electron flux).

e \We use previous values of these input and output

variables to build models. Specifically, we use the values
below to predict the future value of electron flux:

2 days before, day before, yesterday, today = —> tomorrow
U 4 4 4 4
Flux(d —3), Flux(d-2), Flux(d-1), Flux(d),
V(d-3), Vd-2), V(d-1), V(d),
VBs(d-3), VBs(d-2), VBs(d-1), VBs(d)mm)F!ux(d+l)
P(d-3), P(d-2), P@d-1), P(), =7
SysH(d —-3), SysH(d —-2), SysH(d-1), SysH(d),
AsyH (d —3), AsyH (d —2), AsyH(d —1), AsyH (d),

PROGRESS

38/45 (Dr H.L. Wei)
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Forecast of Electron Flux (4)

" Sheffield.

We use V,,,, VBs, Pdyn, Sym-H, and Asy-H as inputs, and
electron flux (maxima) as output (shown below).

The daily electron flux data:

10000

i Day 141 - 260 of year 1995

Flux (MeV)

(22 May-17 Sept).
® 141- 243 (22 May -31 Aug)

8000
6000 1
4000 A
2000 h
! A /

for model identification

RO
N
o

160 180 200 220 240

® 244-260 (01 -17 Sept) for

model test

N

W)

N
o

Iog10 Flux (MeV)
RO = N w S
>

160 180 200 220 240
Day (of Year 1995)

260

39/45 (Dr H.L. Wei)

at the Radiation Belt

Forecast of Electron Flux (5)
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y(k) = Fly(k=1), y(t-2)
u(k-1), u(k-2)
U, (k-1), u,(k-2)

Uy (k-1), uy(k-2),

where y(k) = flux(k),
uy(k) = V(k),
u,(k) = VBs(K),
Ug(k) = Pdyn(k),
Uy(k) = SysH(K),

o UK = AYHK),

We consider the following multiple input NARX model:

y(k=3), y(k-4),
u(k-3), u(k-4),
u,(k=3), u,(k-4),

Us(k—3), uy(k—4)]+e(k)

40/45 (Dr H.L. Wei)
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We have applied the OFR-ERR method to the 103
training data ( day141-243, 1995), and obtained a simple
model containing 6 model terms:

Forecast of Electron Flux (6)
at the Radiation Belt

Contribution

Index |[Model term Parameter ERR (100%)
1 |Flux(d-1) 0.71090335 | 92.8682
2 |V(d-3)*AsyH(d-1) 0.00008062 0.9910
3 |SysH(d-4) *AsyH(d-1) | 0.00011492 0.4564
4 |VBs(d-3)*VBs(d-4) 0.00000116 0.2947
5 |SysH(d-4) 0.03559492 0.1115
6 |SysH(d-4)* Pdyn(d-4) | -0.00384037 0.1433

| 3 < PROGRESSCC’@ 41/45 (Dr H.L. Wei)
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Forecast of Electron Flux (7)
in the Radiation Belt

1 day ahead prediction for training data
(day 140-243,22 May-31 Aug, 1995)

=©— Measurement
-1 day ahead prediction

S i 12185 01 1. i

21
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Forecast of Electron Flux (8)
in the Radiation Belt

1 day ahead prediction for test data
(day 244- 260, 1-17 Sept 1995)
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0 The NARMAX and OFR-ERR Methods

e The orthogonal forward regression (OFR) and error
reduction ratio (ERR) algorithms provide a powerful
tool for compact nonlinear model building from data.

Concluding Remarks

e NARMAX models are transparent and can be written
down. This is highly desirable in many scenarios.

e NARMAX method can be used not only for prediction
but also more importantly for system analysis. For
example, it can detect how the system output relates
to the inputs, and how the inputs interact with other.
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