

Data based modelling of electron fluxes at GEO and statistical wave models

R. J. Boynton

University of Sheffield, UK.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637302.

PROGRESS

Data based modelling of radiation belt electron fluxes at GEO

Radiation Belts

Between 1985-2012 there have been 19 serious incidences

Five of which resulted in a total loss of the satellite

Irrecoverable Loss of Satellite

Telstar 401

Manufacture costs/satellite \$250 - \$350 M

Lost revenue /satellite ~\$ 150 M/year

Satellite lifetime 15-20 years

Galaxy 15

Unresponsive to ground control commands

Interfered with other communication satellites

Recovered after 1 year

Spacecraft in the Radiation Belts

Courtesy- Orbital Sciences

Galaxy 15

Geostationary communication satellite

Became unresponsive to commands after a small space weather event and began to drift

Galaxy 15's telecommunications remained fully functional

This could have interfered with the AMC-11 satellite that distributes television throughout the USA

The effects of space weather: Radiation Belts

We need to be able to forecast the times when the radiation belt environment will be hazardous to the spacecraft to help satellite operators mitigate any issues arise with the spacecraft.

To forecast these events we need a reliable model of the radiation belts

Aims

Work Package 6 of PROGRESS is devoted to the development of models that are able to forecast the electron radiation in the radiation belts.

ModellingFirst principlesvs.

System identification approach

ModellingFirst principlesvs.

System identification approach

System Identification

System Identification

Mapping the input to the output

- Neural Networks
- Genetic Algorithms
- Linear Prediction Filters
- NARMAX Physically Interpretable

Nonlinear

$$y(t) = F[y(t-1),...y(t-n_y),$$

$$u_1(t-1),...,u_1(t-n_{u_1}),...,$$

$$u_m(t-1),...,u_m(t-n_{u_m}),$$

$$e(t-1),...,e(t-n_e)] + e(t)$$

Nonlinear AutoRegressive

$$y(t) = F[y(t-1),...y(t-n_y),$$

$$u_1(t-1),...,u_1(t-n_{u_1}),...,$$

$$u_m(t-1),...,u_m(t-n_{u_m}),$$

$$e(t-1),...,e(t-n_e)] + e(t)$$

Nonlinear AutoRegressive Moving Average

$$y(t) = F[y(t-1),...y(t-n_y),$$

$$u_1(t-1),...,u_1(t-n_{u_1}),...,$$

$$u_m(t-1),...,u_m(t-n_{u_m}),$$

$$e(t-1),...,e(t-n_e)] + e(t)$$

Nonlinear AutoRegressive Moving Average with eXogenous inputs

$$y(t) = F[y(t-1), ..., y(t-n_y),$$

$$u_1(t-1), ..., u_1(t-n_{u_1}), ...,$$

$$u_m(t-1), ..., u_m(t-n_{u_m}),$$

$$e(t-1), ..., e(t-n_e)] + e(t)$$

Nonlinear AutoRegressive Moving Average with eXogenous inputs

$$y(t) = F[y(t-1),...y(t-n_y),$$

$$u_1(t-1),...,u_1(t-n_{u_1}),...,$$

$$u_m(t-1),...,u_m(t-n_{u_m}),$$

$$e(t-1),...,e(t-n_e)] + e(t)$$

NARMAX Model:

- Nonlinear Function *F*. e.g. Polynomial, Wavelets, etc.
 - Degree of polynomial
 - Type of wavelet
- Inputs
- System lags

Nonlinear AutoRegressive Moving Average with eXogenous inputs

$$y(t) = F[y(t-1),...y(t-n_y),$$

$$u_1(t-1),...,u_1(t-n_{u_1}),...,$$

$$u_m(t-1),...,u_m(t-n_{u_m}),$$

$$e(t-1),...,e(t-n_e)] + e(t)$$

NARMAX Model:

- Nonlinear Function *F*. e.g. Polynomial, Wavelets, etc.
 - Degree of polynomial
 - Type of wavelet
- Inputs
- System lags

Polynomial

- FROLS algorithm Involves three stages
 - 1. Structure selection: Error Reduction Ratio (ERR)
 - 2. Coefficient estimation
 - 3. Model validation

NARMAX FROLS

Coefficient Estimation

NARMAX FROLS

Coefficient Estimation

Squares

NARMAX FROLS

Coefficient Estimation

Electron Flux Models

A separate NARMAX model was developed for the >800 keV and >2 MeV energies using:

Output Data GOES Electron Fluxes *J* Lags: 24 hours, 48 hours

Input Data

Solar wind Velocity *V*, Density *n*, the Dst Index *Dst*, z IMF *Bz*, and the time IMF was southward per day τ_{Bz} . Lags: 24 hours, 48 hours

Electron Flux Models

A separate NARMAX model was developed for the >800 keV and >2 MeV energies using:

Output Data GOES Electron Fluxes *J* Lags: 24 hours, 48 hours

Input Data

Solar wind Velocity *V*, Density *n*, the Dst Index *Dst*, *z* IMF *Bz*, and the time IMF was southward per day τ_{Bz} . Lags: 24 hours, 48 hours

F is a third degree polynomial

$$\begin{aligned} f(t) &= F[J(t-24h), J(t-48h), \\ V(t-24h), V(t-48h), \\ n(t-24h), n(t-48h), \\ B_z(t-24h), B_z(t-48h), \\ \tau_{B_z}(t-24h), \tau_{B_z}(t-48h), \\ Dst(t-24h), Dst(t-48h), \\ e(t-24h), e(t-48h)] \end{aligned}$$

Electron Flux Models - Performance

The performance of the model was assessed using the Correlation Coefficient (CC)

$$CC = \frac{\sum_{t=1}^{N} \left[\left(y(t) - \overline{y}(t) \right) \left(\hat{y}(t) - \overline{\hat{y}}(t) \right) \right]}{\sqrt{\sum_{t=1}^{N} \left[\left(y(t) - \overline{y}(t) \right)^{2} \right] \sum_{t=1}^{N} \left[\left(\hat{y}(t) - \overline{\hat{y}}(t) \right)^{2} \right]}}$$

and Prediction Efficiency (PE)

$$PE = 1 - \frac{\sum_{t=1}^{N} \left[\left(y(t) - \hat{y}(t) \right)^{2} \right]}{\sum_{t=1}^{N} \left[\left(y(t) - \overline{y}(t) \right)^{2} \right]}$$

Where y(t) is the measured output at time t, \hat{y} is the forecast output, N is the length of the data and the bar indicates the mean.

Electron Flux Model – SNB³GEO

>800 keV Electron flux model at geosynchronous orbit

>2 MeV Electron flux model at geosynchronous orbit

PE = 0.786 and CC = 0.894 for over 26 months of data between 14/04/2010 to 30/06/2012

Electron Flux Model – SNB³GEO

Electron flux – SNB³GEO

NOAA-REFM vs. SNB³GEO

Electron flux – SNB³GEO

NOAA-REFM vs. SNB³GEO

Balikhin et al. [2016], Space Weather

Fluxes

Model	Correlation	PE
REFM	0.73	-1.31
SNB ³ GEO	0.82	0.63

log₁₀(Fluxes)

Model	Correlation	PE
REFM	0.85	0.70
SNB ³ GEO	0.89	0.77

March 2nd, 2012 - January 1st 2014.

Electron Flux Models - Performance

Heidke Skill score

Event Forecast	Event Observed		
	Yes	No	Marginal Total
Yes	а	b	a + b
No	с	d	c + d
Marginal Total	a + c	b + d	a+b+c+d=n

$$HSS = \frac{2(ad - bc)}{[(a+c)(c+d) + (a+b)(b+d)]}$$

Electron Flux Models - Performance

NOAA-REFM

Fluence (cm ⁻² sr ⁻¹ d ⁻¹)	>`	10 ⁸	>1	0 ^{8.5}	>	>10 ⁹
REFM HSS	0.	666	0.	482	().437
Observation	Yes	No	Yes	No	Yes	No
Forecast						
Yes	<i>x</i> = 86	<i>z</i> = 22	<i>x</i> = 23	<i>z</i> = 22	<i>x</i> = 4	<i>z</i> = 7
No	<i>y</i> = 43	<i>w</i> = 510	<i>y</i> = 21	w = 595	<i>y</i> = 3	<i>w</i> = 647

SNB³GEO

Fluence (cm ^{-2} sr ^{-1} d ^{-1})	>1	10 ⁸	>1	0 ^{8.5}	2	>10 ⁹
SNB ³ GEO HSS	0.738		0.634		0.612	
Observation	Yes	No	Yes	No	Yes	No
Forecast						
Yes	<i>x</i> = 106	<i>z</i> = 33	<i>x</i> = 31	<i>z</i> = 19	<i>x</i> = 4	<i>z</i> = 2
No	<i>y</i> = 23	<i>w</i> = 499	<i>y</i> = 13	<i>w</i> = 598	<i>y</i> = 3	<i>w</i> = 652

Electron Flux Models: Low energies

A separate NARMAX model was developed for each of the 5 low energies (30-50 keV, 50-100 keV, 100-200 keV, 200-350 keV, 350-600 keV) using:

Output Data

GOES Electron Fluxes Lags: 24 hours, 48 hours

Input Data

Solar wind Velocity *V*, Density *n*, Pressure *p*, the Dst Index *Dst*, and southward IMF *B* Lags: 2 hours, 3 hours,..., 48 hours

Electron Flux Models: Low energies

A separate NARMAX model was developed for each of the 5 low energies (30-50 keV, 50-100 keV, 100-200 keV, 200-350 keV, 350-600 keV) using:

Output Data

GOES Electron Fluxes Lags: 24 hours, 48 hours

Input Data

Solar wind Velocity *V*, Density *n*, Pressure *p*, the Dst Index *Dst*, and southward IMF *B* Lags: 2 hours, 3 hours,..., 48 hours

F is a fourth degree polynomial

$$\begin{split} J(t) &= F[J(t-24h), J(t-48h), \\ v(t-2h), v(t-3h), ..., v(t-48h), \\ n(t-2h), n(t-3h), ..., n(t-48h), \\ p(t-2h), p(t-3h), ..., p(t-48h), \\ Dst(t-2h), Dst(t-3h), ..., Dst(t-48h), \\ B(t-2h), B(t-3h), ..., B(t-48h), \\ e(t-24h), e(t-48h)] + e(t) \end{split}$$

Model	Forecast Horizon (hours)	PE (%)	CC (%)	Period
40-50 keV	10	66.9	82.0	01.03.2013- 28.02.2015
50-100 keV	12	69.2	83.5	01.03.2013- 28.02.2015
100-200 keV	16	73.2	85.6	01.03.2013- 28.02.2015
200-350 keV	24	71.6	84.9	01.03.2013- 28.02.2015
350-300 keV	24	73.6	85.9	01.03.2013- 28.02.2015
> 800 keV	24	72.1	85.1	01.01.2011- 28.02.2015
>2MeV	24	82.3	90.9	01.0.12011- 28.02.2015

Forecast Horizon of NARMAX models

The amount of time that the NARMAX model is able to forecast into the future is dependent on the minimum exogenous lag within the final NARMAX model.

For example, if the minimum exogenous lag within the NARMAX model is a velocity value 10 hours ago

$$J(t) = aV(t-10) + \dots$$

Where a is the coefficient, then if we know the velocity at the present time t, then we can calculate an estimate of the electron flux, J, at time t+10 hours (a 10 hour ahead forecast)

$$J(t+10) = aV(t) + \dots$$

Model Performance Figures

Model Performance Figures

Model Performance Figures

Real-time operation

Physics Based Models

The evolution of the radiation belt electrons can be modelled by the bounce-averaged Fokker-Planck equation [Schulz and Lanzerotti, 1974]:

$$\begin{split} \frac{\partial f}{\partial t} &= L^{*2} \frac{\partial}{\partial L^*} \left| \frac{1}{\mu, J} \frac{1}{L^{*2}} D_{L^*L^*} \frac{\partial f}{\partial L^*} \right|_{\mu, J} + \frac{1}{p^2} \frac{\partial}{\partial p} \right|_{\alpha_0, \mathcal{L}} \\ & \cdot p^2 \left(D_{pp} \frac{\partial}{\partial p} \left|_{\alpha_0, \mathcal{L}} f + D_{p\alpha_0} \frac{\partial}{\partial \alpha_0} \right|_{p, \mathcal{L}} f \right) + \frac{1}{T(\alpha_0) \sin(2\alpha_0)} \frac{\partial}{\partial \alpha_0} \left|_{p, \mathcal{L}} f \right. \\ & \left. \cdot T(\alpha_0) \sin(2\alpha_0) \left(D_{\alpha_0 \alpha_0} \frac{\partial}{\partial \alpha_0} \left|_{p, \mathcal{L}} f + D_{\alpha_0 p} \frac{\partial}{\partial p} \right|_{\alpha_0, \mathcal{L}} f \right) + \frac{f}{\tau}, \end{split}$$

Physics Based Models

The evolution of the radiation belt electrons can be modelled by the bounce-averaged Fokker-Planck equation [Schulz and Lanzerotti, 1974]:

$$\begin{split} \frac{\partial f}{\partial t} &= L^{*2} \frac{\partial}{\partial L^*} \left| \frac{1}{L^{*2}} D_{L^*L^*} \frac{\partial f}{\partial L^*} \right|_{\mu,J} + \frac{1}{p^2} \frac{\partial}{\partial p} \right|_{\alpha_0, \mathcal{L}} \\ & \cdot p^2 \left(D_{pp} \frac{\partial}{\partial p} \left|_{\alpha_0, \mathcal{L}} f + D_{p\alpha_0} \frac{\partial}{\partial \alpha_0} \right|_{p, \mathcal{L}} f \right) + \frac{1}{T(\alpha_0) \sin(2\alpha_0)} \frac{\partial}{\partial \alpha_0} \left|_{p, \mathcal{L}} f \right. \\ & \left. \cdot T(\alpha_0) \sin(2\alpha_0) \left(D_{\alpha_0 \alpha_0} \frac{\partial}{\partial \alpha_0} \left|_{p, \mathcal{L}} f + D_{\alpha_0 p} \frac{\partial}{\partial p} \right|_{\alpha_0, \mathcal{L}} f \right) + \frac{f}{\tau}, \end{split}$$

These models, such as Versatile Electron Radiation Belt (VERB) model employ numerical codes that involve finding solutions of the diffusion equations.

Diffusion Coefficients

Many approaches have been developed to calculate the diffusion coefficients, all of which require models of various waves.

For example, the VERB code employs statistical wave models for Lower Band Chorus (LBC), Hiss and Equatorial MagnetoSonic (EMS) waves.

Currently, the statistical models of the waves distributions employ wave measurements on various spacecraft, which are parameterized by the location of observations and current values for geomagnetic indices neglecting solar wind measurements and geomagnetic evolution.

Aims

Work Package 4 of PROGRESS aims to determine the influential parameters (solar wind and geomagnetic indices) that control the wave amplitude distribution at particular locations and then redevelop the statistical wave models

Diffusion coefficients

A10225

Statistical wave models

A10225

Aryan et al., JGR, 2014

Figure 2. Equatorial wave intensity of lower band chorus as a function of L^* , MLT and geomagnetic activity for each of the five satellites.

Meredith et al., JGR, 2012

How to identify wave control parameters

What parameters influence the waves in the radiations belts?

How to identify these parameters?

A simple quadratic system

$$y(t) = x^2(t-1) + e(t)$$

Where the output *y* at time *t* is a function of zero mean signal *x* and noise *e*

A simple quadratic system

$$y(t) = x^2(t-1) + e(t)$$

Where the output *y* at time *t* is a function of zero mean signal *x* and noise *e*

A simple quadratic system

$$y(t) = x^2(t-1) + e(t)$$

Where the output *y* at time *t* is a function of zero mean signal *x* and noise *e*

Calculate the correlation function:

$$\phi_{xy}(\tau) = \frac{\sum_{t=1}^{N} \left[\left(y(t-\tau) - \bar{y} \right) \left(x(t) - \bar{x} \right) \right]}{\sqrt{\sum_{t=1}^{N} \left[\left(y(t) - \bar{y} \right)^2 \right] \sum_{t=1}^{N} \left[\left(x(t) - \bar{x} \right)^2 \right]}}$$

A simple quadratic system

$$y(t) = x^2(t-1) + e(t)$$

Where the output *y* at time *t* is a function of zero mean signal *x* and noise *e*

A simple quadratic system

$$y(t) = x^2(t-1) + e(t)$$

Where the output y at time t is a function of zero mean signal x and noise e

NARMAX FROLS ERR

Better to use techniques that are able to account for nonlinear systems, such as NARMAX FROLS ERR

NARMAX FROLS ERR

A simple quadratic system

$$y(t) = x^2(t-1) + e(t)$$

Where the output *y* at time *t* is a function of zero mean signal *x* and noise *e*

NARX model:

$$y(t) = F[y(t-1), y(t-2), x(t-1), x(t-2), v(t-3), v(t-1), v(t-2), v(t-3)]$$

F as a third degree polynomial

Where *v* was a random variable

TERM	ERR (%)
$x^2(t-1)$	98.6

Wave data

ERR analysis of radiation belt waves

Output Data

Wave intensity, B_w , for each MLT, L bin From THEMIS, Cluster and Double Star

 Input Data
 $B_w(L, MLT, t) = F[V(t-0), V(t-2), ..., V(t-20),$

 Solar wind Velocity V,
 n(t-0), n(t-2), ..., n(t-20),

 Density n,
 p(t-0), p(t-2), ..., p(t-20),

 Pressure p,
 $B_B(t-0), B_B(t-2), ..., B_B(t-20)]$

 and IMF factor B_B Lags: 0 hours, 2 hours, 4 hours,..., 20 hours

N.B. *F* contains no autoregressive or moving average terms as wave data is too sparse

LBC Waves: SW inputs, v15 data: All Spacecraft

Hiss Waves: SW inputs, v15 data: All Spacecraft

ERR analysis of radiation belt waves

Output Data

Wave intensity, B_w , for each MLT, L bin From THEMIS, Cluster and Double Star

Input Data	$B_w(L, MLT, t) = F[V(t-0), V(t-2),, V(t-20),$
Solar wind Velocity V,	n(t-0), n(t-2),, n(t-20),
Density <i>n</i> ,	p(t-0), p(t-2),, p(t-20),
Pressure <i>n</i> .	$B_B(t-0), B_B(t-2),, B_B(t-20),$
IME factor B_{-}	Dst(t-0), Dst(t-2),, Dst(t-20),
Det index D_B ,	AE(t-0), AE(t-2),, AE(t-20)]
$Dst \operatorname{Index} Dst,$	
And AE index AE.	

Lags: 2 hours, 4 hours,..., 20 hours

N.B. *F* contains no autoregressive or moving average terms as wave data is too sparse

Quadratic F

LBC Waves: SW-C-GI inputs, v16 data: All Spacecraft

ERR analysis of radiation belt waves: Hiss waves

Hiss Waves: SW-C-GI inputs, v15 data: All Spacecraft

ERR analysis of radiation belt waves: EMS waves

Quadratic F

EMS Waves: SW-C-GI inputs, v15 data: All Spacecraft

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637302.

