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Data Driven Modelling

Similar Terminologies:

•  Black-box Modelling

•  Data-based Modelling

•  Learning from Data

•  System Identification

…, etc. 
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Outline of the Talk

2) Three classes of models 

─ White, grey and black-box models  

3) Data-driven modelling

─ Letting data speak and learning from data  

4) Examples

─ Using data-driven modelling techniques  

1) A quick selective review of system models
─ Model types and generalised linear models
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PART 1 

A Quick Selective Review

of

System Models
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Linear vs Nonlinear
Linear Systems Nonlinear Systems

Linear systems are simple systems 
whose structure and behavior are 
regular and easy to understand.

Nonlinear systems are complex 
systems whose structure and behavior 
are normally difficult to analyse.

July 26-28, 2017

Linear vs Nonlinear Models

Linear Models

• Continuous-time model

• Continuous-time state space

• Continuous-time transfer
function

Nonlinear Models
♦ Continuous-time NL model

♦ Continuous-time NL state space

♦ Continuous-time transfer function
for a nonlinear system?  
(No, not really!)

• Discrete-time model

• Discrete-time transfer 
function (e.g. Z-transfer 
function)

• Discrete-time state space

♦ Discrete-time NL model

♦ Discrete-time NL state space

♦ Discrete-time transfer function 
for nonlinear systems?  
(No, not really!)
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Parametric & Nonparametric Models

• Parametric models
◦ ODE’s (lumped parameter model) 

◦ PDE’s (distributed parameter model)

◦ AR(X) (AutoRegressive with eXogenous inputs)

◦ ARMA (AautoregRessive Moving Average)

◦ NAR(X) (Nonlinear Autoregressive with eXogenous inputs)

◦ NARMA(X) (Nonlinear Autoregressive Moving Average with  

eXogenous inputs)

• Non-parametric approaches
◦ Correlation analysis (auto- and cross-correlation) 

◦ FFT and Spectral analysis

◦ Time-frequency analysis

◦ Wavelet transform

◦ PCA, ICA, …

◦ Bayesian, Gaussian, kernel methods, … etc.
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Linear-In-The-Parameters vs

Linear-In-The-Variables Models

Let x, z be independent (‘input’) variables,  y be the 

dependent variable, and e the noise signal; also let a, b, c

be the model parameters. Then, 

• y = a + bx (linear in both)

• y = a + bx + cx2 (linear-in-the-parameters)

• y = a + xb (linear-in-the-variables)

• y = a + ln(xb/zc) (linear in neither)
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Regression Model (1)

The simplest case of linear regression is used for line fitting   

y = ax + b           (1)

The unbiased estimates of a and b can be calculated using given data 

points (xk, yk) (k=1,2, …, N). 

– The Simplest Case
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Regression Model (2)

Multiple linear regression model has a form below 
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where xi is the ith ‘input’ (independent) variable, ai is the 

associated model parameter.  

• Given observational data points (xk, yk) (k=1,2, …, N), the 

regression model becomes 
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– The Multiple Regression
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Regression Model (3)
– The Vector and Matrix Form
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Regression Model (4)
– The General Form 

• In general sense, regression model can be expressed in a  

linear-in-the-parameters form 

exxaxxaxxay nmmnn  ),,(),,(),,( 1111100  

eaaa mm  )()()( 1100 xxx  
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m

i

ii ea
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)( x

whereφi(x) are called model regressors or model terms 

formed by the n model variables through some linear or 

nonlinear manners.   
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Regression Model (5)
– The General Form: Examples

• Consider a nonlinear IO system described by the model

1( ) ( 2)y k a y k 

2 ( 1) ( 1)a y k u k  
2

3 ( 2)a u k 
3

4 ( 1)a y k 
2

5 ( 2) ( 2)a y k u k  

)(ke

• Consider the model

y =      β0  +   β1 logx1 +    β2 logx2  +  ε

φ0(x1, x2)=1 φ1(x1, x2)=log x1 φ2(x1, x2)=log x2

φ5(x(k))

φ4(x(k))

φ3(x(k))

φ2(x(k))

φ1(x(k))

x1(k)= y(k-1)

x2(k)= y(k-2)

x3(k)= u(k-1)

x4(k)= u(k-2)

x(k)=[x1(k), x2(k), x3(k), x4(k)]T
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Regression Model (6)
– The General Form: Parameter Estimation

• Define the design matrix
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• Parameters can be estimated by least squares estimator 
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Regression Model (7)
– Least Squares Method Is BLUE

• Least squares (LS) is BLUE

♦ Best (Minimum Variance)

♦ Linear

♦ Unbiased

♦ Estimator

• LS provides a unique solution if the design matrix is full 

rank in column.

• LS is equivalent to maximum-likelihood if noise is 

Gaussian.  
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Three Levels of Modelling for 

Complex Systems

PART 2
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Three Classes of Boxes (Systems): 

White, Grey and Black-Boxes

All necessary 

information is 

completely known

System information

is partly known (the 

remaining part is  

unknown) 

No a priori 

information of 

the system is 

available

White-Box Grey-Box Black-Box

July 26-28, 2017 HLW, Data Based Modelling, Slide 17 of 45

White-, Grey- and Black-Box 

Modelling Approaches

Black-box

First principles &

data driven 

modelling

techniques 

Data driven 

modelling

(let data speak 

for themselves)

First principles e.g. 

physical,

mechanical, and 
chemical laws 

Grey-boxWhite-box
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Two Trivial Examples 

x 2z x +2yy

2 inputs

x y z

0 1 2

0 2 4

1 1 3

1 2 5

2 1 6

2 2 8

x y z=f(x,y)

0 1 -3

0 2 -6

1 1 -2

1 2 -5

2 1 1

2 2 -2

x z (output) 
z (x,y)f

y

2 inputs

f(x,y) =???

1 output

z
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Pictures above and below were from 

Richard Seto’s lecture on Physics 2000.

Using Newton’s second law of motion, 
along the tangential direction, we have  

212122
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  21 , xx

Taking the state variables as 

  kLmgmL  )sin(

White-Box Modelling: 

An Example - Pendulum

we have the system state model  

Using this model, we can do simulation 
and analysis etc. 
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Grey-Box Modelling 

A Simple Example - Spring

f

g

e

d

c
b

a

Force

L
e

n
g

th

b

a

c

d

e
f

g
Record Force (N) Length (in)

1,   a 1.1 1.5

2,   b 1.9 2.1

3,   c 3.2 2.5

4,   d 4.4 3.3

5,   e 5.9 4.1

6,   f 7.4 4.6

7,   g 9.2 5.0

Experimental data

Assume that the change in length of the spring is proportional to 

the force applied (Hooke’s law),i.e., Length = a + b×Force.

With the known model structure, we can estimate the unknown 

model parameters a and b using some standard algorithm.   

When F = 5, L= ? 

July 26-28, 2017

Grey-Box Modelling 

A Simple Example – Parameter Estimation

Data Model

L a b F  
a =?

b =?

F L

1.1 1.5

1.9 2.1
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9.2 5.0
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The suggested linear model L=1.2+0.44×F can only approximately represent 

the data, that is why there is an error term e in each of the above equations.    
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Black-Box Modelling

• White-Box: EVERYTHING of the system is 

known (including model structure, parameters, 

relevant governing laws and rules etc).   

• Black-Box: NOTHING (or little) of the TRUE 

system model is known or can be known. 

Black-Box

Data
What is available are recoded data

of the system behaviour of interest.

The objective is to learn a model or 

a set of models from data.
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Uncovering A Black-Box 

Letting Data Speak

and

Learning from Data

PART 3
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Data Driven Modelling

• Black-Box Modelling: To model black-box systems, 

what we can do is to let data speak and learn from data.

Identification

Toolkit

Data Model 

Black-Box

Data

• System Identification: A science of generating models 

from data with no (or very limited) a priori knowledge of 

the inherent system dynamics.

Common Model Classes:

• Linear vs Nonlinear

• Parametric vs Nonparametric

• Continuous vs Discrete time

• Lumped vs Distributed

Common Model Types:

• Regression, …

• Differential  eqns,  …

• Difference eqns, …

• Artificial neural nets, …

• Statistical models, …
July 26-28, 2017

Input-Output Models (1)

...

20 40 60 80 100

0.1

0.2

0.3

0.4

20 40 60 80 100

0.3

0.4

0.5

0.6

Input signal Output signal

•  Assumption:

a)  System input and output signals are measurable.

b)  The true system model structure is NOT known. 

•  Main Objective and Task:

To generate a model that well represents the relationship 

and reveals the dynamics between the input and output.
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Input-Output Models (2)

( )y t

1 2( ) ( ( ), ( ), , ( )) ( )ny t f x t x t x t e t 

System identification aims to find a model that represents 

the relationship between system input and output such that

• f(•) can be any arbitrary function but often is chosen to be those that 

are easily interpreted, or that have good properties and performance.

...

•  x1(t), x2(t), …, xn(t) are called input variables (also called 

independent variables, explanatory variables, or simply predictors).

•  y(t) is the output variable (also known as dependent variable).

e(t) is noise or error that inevitably 

exists in any data-driven modelling

1

2

( )
( )

...
( )n

x t
x t

x t







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Input-Output Models (3) - ANNs

• Artificial Neural Networks (ANNs):

ANNs are among the most popular approaches to 

data driven modelling. 

• Appropriately trained ANNs

can have a very good 

generalization property 

(ie prediction capability)

• However, ANN models are opaque and cannot be 

written down, and are difficult to interpret. 

• ANN models may not be applicable in many real 

application scenarios.    
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I/O Models (4) – Linear Regression

• Linear regression models are of the form 

• Note that in many data-based modelling tasks, the 

parameters a0, a1, a2, …, an are unknown and need to be 

estimated from observed data. 

1 2

0 1 1 2 2

( ) ( ( ), ( ), , ( )) ( )

      ( ) ( ) ... ( ) ( )

n

n n

y t f x t x t x t e t

a a x t a x t a x t e t

 

     

• The estimates of these parameters can often be 

obtained by means of a least squares (LS) method.   
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I/O Models (5): Generalized Linear Regression

• Consider a simple case with only 3 explanatory variables: 

x1(t), x2(t), x3(t). A generalized linear model for such a 

case can be chosen as:

1 2 3

0 1 1 2 2 3 3

4 1 1 5 1 2 6 1 3

7 2 2 8 2 3 9 3 3

10 1 1 1 11 1 1 2

( , , )

  

          

          

          ...

          ...

          ...

          

y f x x x e

a a x a x a x

a x x a x x a x x

a x x a x x a x x

a x x x a x x x

e

 

   

  

  

  







All linear model terms

All cross product model 

terms of degree 2

All cross product model 

terms of degree 3

All model terms of 

higher nonlinear degrees

e is modelling error
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I/O Models (4) – Linear Difference Eqns

• In dynamic system modelling, the explanatory 

variables x1(t), x2(t), …, xn(t) are defined as the lagged 

system input and output variables; in this case,  

1 2

0 1 2

1 2

( ) [ ( ), ( ), , ( )] ( )

       ( 1) ( 2) ( )

               ( 1) ( 2) ( )

               ( )

n

p

q

y t f x t x t x t e t

a a y t a y t a y t p

b u t b u t b u t q

e t

 

       

      


• This is usually referred to as an AutoRegressive with 

eXogenous (ARX) model, where  p and q are called model 

orders. 

1

1

( ) ( 1)

...
( ) ( )

( ) ( 1)

...
( ) ( )

p

p

p q

x t y t

x t y t p

x t u t

x t u t q





 

  


 


 

...u(t)
Input signal

y(t)
Output signal
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I/O Models (5) – Nonlinear Difference Eqns

• Consider a simple nonlinear difference equation:

0 1 2 3

4 5 6

7 8 9

 ( ) ( 1) ( 2) ( 1)

       ( 1) ( 1) ( 1) ( 2) ( 1) ( 1)

       ( 2) ( 2) ( 2) ( 1) ( 1) ( 1)

       ...

       ...

       ( )

y t a a y t a y t a u t

a y t y t a y t y t a y t u t

a y t y t a y t u t a u t u t

e t

      

        

        







( ) [ ( 1), ( 2), ( 1)] ( )y t f y t y t u t e t    

• We can use polynomials to approximate the nonlinear 

function f[•] as below:    
All linear model 

terms

All cross product  model

terms of degree 2

All model terms of 

higher nonlinear degrees

• This is usually referred to as a Nonlinear AutoRegressive with 

eXogenous input model (NARX).
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Application Examples 

of 

Data-Driven Modelling 

PART 4
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Example 1:  Bioethanol Production (1)

Time 

(hr)

Glucose 

(mM)

Ethanol 

(mM)

12 11.71731 0.212928

16 11.2481 0.558031

20 10.26968 1.132366

24 8.363881 2.251393

28 5.422382 3.756482

32 3.691161 5.358566

36 2.910126 6.206967

40 2.471344 6.847968

44 2.032576 7.485361

48 1.930023 7.812776

52 1.827471 8.140191

56 1.716091 8.273835

60 1.604711 8.407479

10 20 30 40 50 60
0

2

4

6
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10

12

Hour

G
lu

c
o

s
e

 a
n

d
 E

t
h

a
n

o
l 
(m

M
)

Glucose

Ethanol

We have applied the NARX modelling approach 

to the  biomedical data, aiming to reveal the 

relationship between ethanol product and  glucose, 

without using any a priori. 

Experimental Data
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Example 1:  Bioethanol Production (2)

The identified NARX Model is

Ethanol(t) =   0.951356×Ethanol(t-1)+0.403146×Glucose(t-2) 

– 0.041709×Glucose(t)×Glucose(t-3) + e(t)

10 20 30 40 50 60

0

2

4

6

8

Hour

E
th

a
n

o
l (

m
M

)

Measurement

Model prediction

Prediction error

This is a simple 

model that can 

perfectly link the 

system output 

(ethonal) to the 

input (glucose).
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Example 2: 

High Tide Forecast at the Venice Lagoon (1)

• A multiscale Cardinal B-spline NARMAX model was 

employed   

• The identified model was used to predict water levels 

of year 1993  

• For a case study, the hourly water level data for 

year 1992 were used for model estimation  
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Example 3:   (cont.) 

High Tide Forecast at the Venice Lagoon (2)

0 50 100 150 200
-40

-20

0

20

40

60

80

100

120

140

Time [hr]

W
a

te
r 

L
e

ve
l [

cm
]

• 24 hours ahead prediction of water level at the Venice Lagoon in 1993 

• Thin solid line: measurements;  thick dashed: model prediction

July 26-28, 2017

Example 3:  Dst Index Prediction (1)

• Output signal
y(t) = Dst(t) (disturbance storm time, [nT]) index

• Input variable 

u(t) = VBs(t) (solar wind rectified electric field [mv/m])    

• Training data 
Hourly Dst index and VBs data, March 1-31, 1979  

No. of samples = 744   

• Test data 
Hourly Dst index and VBs data, April 1-30, 1979  

No. of samples = 720   

02486.0)( ty )1(98368.0  ty )1()1(92130.0 3  tuty

)2()3()1(51936.0 2  tutyty )2()1()1(25977.1 2  tututy

• Identified model
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Example 4: Dst Index Prediction (2)

• Training data: Hourly Dst index and VBs data, March 1-31, 1979  (~ 744)

• Test data:     Hourly Dst index and VBs data, April 1-30, 1979 (~ 720)

July 26-28, 2017 HLW, Data Based Modelling, Slide 39 of 45

Example 4: Dst Index Prediction (3)

• Storm 1:  PE = 91.48%    (PE: Prediction Efficiency)

• Storm 2:  PE = 92.17%

• All test data:  PE = 93.34%
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The Understanding of Complex 

Systems Needs Data-Driven 

Modelling

July 26-28, 2017 HLW, Data Based Modelling, Slide 41 of 45

System Identification Has Many Applications 

for the Analysis of Complex Systems  

Chertsey BBC, Surry (9.04 am 13th Feb 2014)

In practice, theoretical models are very difficult, if not impossible, to 
obtain (as they need first principles) . Data-driven modelling provides a 
complementary but powerful  tool for understanding complex systems.
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Tips for Data Driven Modelling 

and

Concluding Remarks
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Tips for Data Driven Modelling

• Always try the simplest possible models first (e.g. linear).

• If a simpler model works, then forget complex models. 

• Keep in mind the main purpose of your modelling task.

• Transparent, parsimonious and easily interpretable models 

(e.g. regression models) are desirable if you are aiming to 
reveal dependency and interaction relationships between 
different explanatory variables/factors. 

• If the modelling task is merely focused on prediction or 

classification, then either parametric models (e.g. linear 
regressons) or  complicated opaque models (such as ANN 
models) can be an option.  
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Concluding Remarks

• System identification and data driven modelling, 

as powerful state-of-the-art approaches, have been 
widely applied to various areas of science and 
engineering. 

• No particular modelling methods are always the

‘best’ and/or ‘universal’ for all applications, and 
therefore it is not possible or appropriate to claim 
that one approach is always better than all the 
others for solving all problems.
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Thank You !
Any Questions?

July 26-28, 2017 HLW, Data Based Modelling, Slide 48 of 45


