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Online Forecasts – Sheffield GOES Model  The one day ahead forecasts of the 
relativistic electron fluxes with 
energies greater than 2 MeV at 
GEO has been developed in 
Sheffield and is available in real 
time: 
 http://www.ssg.group.shef.ac.uk/
USSW/2MeV_EF.html.  
The PE for this model calculated 
for the period 14 April 2010  and 
12 April  2013  is equal to 0.786 
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NOAA / Space Weather Prediction Center
Relativistic Electron Forecast Model

Presented by the USAF and NOAA/ Space Weather Prediction Center

The impact of high-energy (relativistic) electrons on orbiting satellites can cause electric discharges across internal satellite
components, which in turn leads to spacecraft upsets and/or complete satellite failures. The Relativistic Electron Forecast
Model predicts the occurrence of these electrons in geosynchronous orbit. 
Plots and data are updated daily at 0010 UT. Dashed vertical lines indicate the last vertical value. 
When the input parameters are not available, the forecast is not shown.

REFM Verification Plot and Model Documentation

1 to 3 Day Predictions (text file) and corresponding Performance Statistics. 
Predictions created using data from the ACE spacecraft.

Historical electron particle data is archived at the 
National Geophysical Data Center for Solar-Terrestrial Physics.

Visually impaired users may contact SWPC for assistance.
Please credit SWPC when using these images.
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Comparison of REFM and SNB3GEO 
Forecasts (01.03.2012-03.07.2014) 
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Comparison of REFM and SNB3GEO Forecasts  
 Balikhin, Rodriguez, Boynton, Walker, Sibeck Billings, submitted to SW  2015 

Model Prediction 
Efficiency 
Flux  

Correlation 
Flux 

Prediction 
Efficiency 
Log Flux  

Correlation 
Log Flux 

REFM -1.31 
 

0.73 
 

0.70 0.85 
 

SNB3GEO 0.63 
 

0.82 0.77 0.89 
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X - 26 BALIKHIN ET AL.: COMPARATIVE ANALYSIS

Table 1. A comparison of the prediction e�ciencies and correlations obtained by comparing

the forecasts of the> 2MeV electron flux and log10(Flux) from the REFM and SNB3GEO models

with measurements from the GOES-13 satellite.

Model PE Flux Correlation Flux PE log10 Flux Correlation log10 Flux
REFM -1.31 0.73 0.70 0.85

SNB3GEO 0.63 0.82 0.77 0.89

Table 2. Contingency tables and Heidke skill scores for the REFM predictions.

Fluence (cm�2sr�1day�1) > 108 > 108.5 > 109

REFM HSS 0.666 0.482 0.437
Observation: Yes No Yes No Yes No
Forecast

Yes 86 22 23 22 4 7
No 43 510 21 595 3 647

Table 3. Contingency tables and Heidke skill scores for the SNB3GEO predictions.

Fluence (cm�2sr�1day�1) > 108 > 108.5 > 109

SNB3GEO HSS 0.738 0.634 0.612
Observation: Yes No Yes No Yes No
Forecast

Yes 106 33 31 19 4 2
No 23 499 13 598 3 652

Figure 1. Scatter plots of (Left panel) REFM and (Right panel) SNB3GEO one-day predictions

vs. GOES-13 observations for the period of interest (March 2nd 2012-December 31st 2013). The

diagonal is the line of perfect correlation. The lower cuto↵ in the observations corresponds to an

instrument flux background of 10 1/(cm2 sr s).
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measure [Heidke, 1926; Doswell et al., 1990; Balch, 2008]. The HSS is the ratio of the178

total number of correct predictions divided by the total number of observations, from both179

of which has been subtracted the expected number of correct forecasts by chance. Given180

w is the number of successful negative predictions, x is the number of successful positive181

predictions, y is the number of false negatives, and z is the number of false positives, the182

HSS is given by [Doswell et al., 1990]183

S =
2(xw � yz)

y

2 + z

2 + 2xw + (y + z)(x+ w)
(2)184

In the present study, a successful positive prediction is one in which the predicted daily185

fluence is above some threshold.186

4. Results

Table 1 displays the resulting values of prediction e�ciency PE and correlation187

calculated for the fluxes and their logarithms using the whole data set of fore-188

casts/measurements. With the exception of the prediction e�ciency for fluxes from189

REFM, all other parameters point to a very similar accuracy for the forecasts by the two190

models, with a marginally (⇡ 5� 10%) better accuracy in favour of SNB3GEO. The pre-191

diction e�ciency for fluxes from the REFM model has a negative value -1.2562, indicating192

it to be substantially worse than the forecasts by SNB3GEO which has a PE = 0.6313.193

The large di↵erence between the PEs for F2MeV

and log10(F2MeV

) requires some consid-194

eration of which is a better measure of model performance. The scatter plots for the two195

models are similar (Figure 1), with the somewhat greater scatter in the REFM results196

leading to slightly larger correlation values for SNB3GEO. The large di↵erences in PE for197

F2MeV

, especially the large negative PE for REFM, are dominated by the residuals due198
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For Physical Models: 
What are the scientific assumptions underpinning the 
model? (eg MHD formulation, comprehensive or 
simplified representation of physical processes) 
How will the model physics scale to extremes? 
For Empirical Models 
Empirical  models are assumed to be very unlikely to 
handle extremes as they do not scale – do you agree?  

“Physical Based Versus Data Based” 



Online Forecasts – Sheffield GOES Model  The one day ahead forecasts of the 
relativistic electron fluxes with 
energies greater than 2 MeV at 
GEO has been developed in 
Sheffield and is available in real 
time: 
 http://www.ssg.group.shef.ac.uk/
USSW/2MeV_EF.html.  
The PE for this model calculated 
for the period 14 April 2010  and 
12 April  2013  is equal to 0.786 

01/05/2014 21:072 MeV Electron Flux
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Real time forecast of the >2 MeV electron flux at geosynchronous orbit

A Multi Input Single Output (MISO) NARMAX model is used to provide a two day ahead forecast of the electron flux. The inputs to the model are the
daily averaged solar wind parameters. It should be noted that the two day ahead forecast will change as more data is obtained for the current day.

Real time solar wind data from ACE and electron flux data from GOES 13, both provided by the Space Weather Prediction Center, are used to compute the
model output (red), which is compared to the measured electron flux (blue).

The electron flux value at a specific time is the average of the past day. For example, an electron flux value recorded at 04.05.2012 is the average electron
flux between 00:01 UTC 03.05.2012 and 00:00 UTC 04.05.2012.

The electron flux value forecast for two days ahead is calculated from input data averaged between 00:01 UTC and present hour on the current day. For
example, at 08:00 UTC 04.05.2012, the input value recorded for 05.05.2012 will be the average value between 00:01 UTC 04.05.2012 and 08:00 UTC
04.05.2012. This input value is updated every hour, as more data becomes available for the current day, until the end of the day when the input value is set.

Data gaps in the solar wind data are indicated by missing points in the figures.

Archive of the past years model predicted output in a tabular format.

Past 30 days

Prediction Efficiency for the past 30 days =

Past 90 days

Home Electron Flux Dst Index Archive Contact

01/05/2014 21:072 MeV Electron Flux
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Past 200 days

Past year
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Real time forecast of the >2 MeV electron flux at geosynchronous orbit

A Multi Input Single Output (MISO) NARMAX model is used to provide a two day ahead forecast of the electron flux. The inputs to the model are the
daily averaged solar wind parameters. It should be noted that the two day ahead forecast will change as more data is obtained for the current day.

Real time solar wind data from ACE and electron flux data from GOES 13, both provided by the Space Weather Prediction Center, are used to compute the
model output (red), which is compared to the measured electron flux (blue).

The electron flux value at a specific time is the average of the past day. For example, an electron flux value recorded at 04.05.2012 is the average electron
flux between 00:01 UTC 03.05.2012 and 00:00 UTC 04.05.2012.

The electron flux value forecast for two days ahead is calculated from input data averaged between 00:01 UTC and present hour on the current day. For
example, at 08:00 UTC 04.05.2012, the input value recorded for 05.05.2012 will be the average value between 00:01 UTC 04.05.2012 and 08:00 UTC
04.05.2012. This input value is updated every hour, as more data becomes available for the current day, until the end of the day when the input value is set.

Data gaps in the solar wind data are indicated by missing points in the figures.

Archive of the past years model predicted output in a tabular format.

Past 30 days

Prediction Efficiency for the past 30 days = 85.9%

Past 90 days

Home Electron Flux Dst Index Archive Contact

31/05/2013 12:31SPACECAST
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Real Time >2 MeV BAS Electron Flux Forecast

Next update at 09:35 UTC on 31 May 2013

Disclaimer
The contributors to and editors of http://www.fp7-spacecast.eu (the "Website") have made all reasonable endeavours to ensure that the
contents of the Website are accurate. However, the science of forecasting is by its nature imprecise and the information provided is intended as a
guide only.

How we ...
Models
Background

BAS model fluxes ! ONERA model fluxes ! BAS model movies ! ONERA model movies !

Forecast From the First 
Principles  

System Science -NARMAX 
May 29-31 2013 
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What is referred to as “Physics Approach”    
Analytical Approach 
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Whenever a theory appears to you as 
the only possible one, take this as a 
sign that you have neither understood 
the theory nor the problem which it 
was intended to solve. 
 
Karl Raimund Popper   



Complex Systems 
Analytical Approach 
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Black box System 

System Identification Approach  
Analytical Approach Systems Approach 
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Linear System : 
(Superposition Principle is valid )  
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Time and Frequency domain representation of  
Linear System 

Y=D[X]   Action of  linear black box  can be represented 
either in  
 the time domain via Impulse Response Function: 
  

∫
∞

−=
0
1 )()()( τττ dtxhty

Or  in   the frequency domain via Linear Frequency Response Function: 

ff XfHY )(1=

H1 describes linear amplification (attenuation) of  
a spectral component and its time delay 

Input  
X(t)  

Output 
Y(t) Linear  

System 



Non-linear System 
 (Superposition Principle is non valid )  
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Time domain      

Frequency domain GFRF 
 Generalyzed Frequency Response Functions 

Nonlinear Systems:Frequency Domain 

N-fold Fourier transform  
of the nth Volterra kernel George 
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H1 describes growth (damping) rate of wave and  dispersion 
H2 describes 3 wave  processes e.g. decay instability 
H3 describes 4 wave  processes e.g. modulational  instability 
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Input-Output data sets���
If the aim is to  develop model that  
minimises   errors  many simple  
methods can be use:d 
Fuzzy Logic, Neural Networks , 
Bayesian metods etc  

NARNAX aimed at the simplest  
model that reproduces the system 
dynamics, the model that can be 
related to the components of the 
system. The model that can be 
interpretable 



Nonlinear AutoRegressive Moving Average 
model with eXogenous input. NARMAX 

Instead of the search for the explicit form of F, 
 its decomposition using some basis  (e.g. polynomial) is 
identified.  
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Polynomial expansion of F 

Objective to estimate θm 
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Even the objective is to estimate θm   
the algorithm is formulated for the auxiliary model: 
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From the auxiliary model to NARMAX model 
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Solar Wind Magnetosphere 
“Coupling Functions” 

From Newell et al., 2007 



functions appear high on the list of successful pairs of
coupling functions.

4.2. Closer Look: Predicting Kp and Auroral Power
With Viscous and Merging Terms

[30] The use of a viscous term in addition to a merging
term makes a dramatic improvement in the predictability of
some indices (none more so than Kp), a moderate improve-
ment in others, and virtually no improvement in a few
(notably cusp latitude, which at low altitude depends almost
entirely on the merging rate). Here we consider two specific
indices of magnetospheric activity, Kp and auroral power.
The latter is perhaps most typical over our ensemble of
magnetospheric indices, in that the predictability improves
modestly (a few percent) when a viscous coupling function
is added. We studied two 11-year periods for Kp, 1984–
1994 and 1995–2005. The two produced nearly identical
results, with insignificantly higher correlation coefficients
for the earlier period. The results here are from 1995–2005,
the more recent period.
[31] The merging function which best predicts Kp is

dFMP/dt, which predicts 55% of the variance (r =
0.753). The best performing viscous term is actually
n1/3v2, but n1/2v2 works nearly as well, and because it
performs better overall (singly and in combination with
merging terms) we will concentrate on the latter. n1/2v2 alone
predicts an impressive 45% (r = 0.670) of the variance in Kp.
The top half of Figure 3 shows the ability of these top
merging and viscous terms to predict Kp. (The combination of
dFMP/dt and n

1/2v2 does predict Kp better than any other pair.)
[32] When both a merging term and a viscous term are

combined, the predictability rises to 75.0% (r = 0.866), as
shown in the bottom of Figure 3. For the previous 11-year
period, namely 1984-1994, the correlation is a very similar
r = 0.868. Here are the equations for the least variance
linear prediction of Kp (actually valid for both 11 year
periods):

Kp ¼ 0:05þ 2:244# 10$4dFMP=dt þ 2:844# 10$6n1=2v2

ðr ¼ 0:866Þ

(Here v is measured in km/s, n in cm$3, and B in nT. Note
predicted Kp is capped at 8.7)
[33] Although it is possible to use the time history of Kp

to do even better, this is an exceptional result from a simple
two term fit to solar wind data alone. By comparison, the
highly performing neural network model of Wing et al.
[2005], when operating from solar wind data alone (their
model 3) has r = 0.84. Thus the quite simple use of two
physics based terms, one merging and one viscous, predicts
Kp better than an optimally trained neural network.
[34] The dramatic improvement from combining a vis-

cous term with a merging term seen for Kp does not hold for
all or even most variables. Perhaps typical is the modest
improvement seen for auroral power. The best viscous term

Table 2. Various Possible Viscous Solar Wind Coupling Functions, Ranked According to Their Ability to Predict Variance in 10
Magnetospheric State Variables

Rank, f Lc Dst AE AU Goes Kp Auro b2i FPC AL Sr2/n

1. n1/2v2 $0.364 $0.500 0.469 0.430 $0.325 0.670 0.510 $0.520 0.319 $0.225 22.3%
2. n1/3v2 $0.371 $0.497 0.458 0.389 $0.353 0.678 0.512 $0.460 0.324 $0.250 21.8%
3. n1/2v3 $0.363 $0.517 0.452 0.383 $0.340 0.653 0.515 $0.449 0.317 $0.236 21.1%
4. n1/6v2 $0.353 $0.460 0.416 0.330 $0.347 0.628 0.471 $0.382 0.294 $0.254 18.5%
5. nv3 $0.331 $0.507 0.425 0.421 $0.260 0.549 0.488 $0.516 0.272 $0.153 18.5%
6. nv5/2 $0.312 $0.457 0.383 0.401 $0.239 0.525 0.448 $0.511 0.249 $0.124 16.3%
7. v4/3 $0.374 $0.408 0.372 0.277 $0.321 0.547 0.402 $0.314 0.252 $0.250 14.7%
8. v $0.324 $0.406 0.374 0.279 $0.321 0.537 0.399 $0.315 0.254 $0.251 14.7%
9. v3/2 $0.321 $0.408 0.372 0.276 $0.319 0.549 0.404 $0.312 0.251 $0.249 14.7%
10. v2 $0.317 $0.409 0.369 0.272 $0.311 0.547 0.407 $0.310 0.247 $0.246 14.4%
11. v2/3 $0.325 $0.405 0.374 0.281 $0.311 0.503 0.396 $0.316 0.255 $0.252 14.4%
12. v1/2 $0.325 $0.403 0.374 0.282 $0.294 0.465 0.395 $0.316 0.255 $0.252 14.0%
13. p $0.277 $0.373 0.316 0.357 $0.202 0.469 0.391 $0.474 0.217 $0.085 12.5%
14. p2/3 $0.272 $0.321 0.326 0.365 $0.199 0.486 0.377 $0.485 0.228 $0.101 12.4%
15. p1/2 $0.267 $0.295 0.329 0.367 $0.194 0.482 0.366 $0.486 0.231 $0.108 12.2%
16. p1/3 $0.193 $0.269 0.331 0.366 $0.186 0.463 0.353 $0.485 0.231 $0.115 11.7%
17. p3/2 $0.274 $0.427 0.288 0.331 $0.183 0.394 0.397 $0.431 0.190 $0.057 11.1%
18. p2 $0.257 $0.420 0.250 0.292 $0.150 0.288 0.387 $0.351 0.159 $0.031 8.5%
19. nv $0.163 $0.149 0.143 0.221 $0.089 0.287 0.253 $0.325 0.136 0.004 4.0%
20. n $0.041 0.030 0.001 0.093 0.033 0.103 0.122 $0.172 0.058 0.070 0.6%

Table 3. The Top 25 Pairs of Coupling Functions, and the
Percentage Variance Predicteda

Pair Rank Function 1 Function 2 Variance Predicted

1 dFMP/dt n1/2v2 61.0%
2 dFMP/dt n1/3v2 60.6%
3 Ewav n1/3v2 60.6%
4 dFMP/dt n1/2v3 60.5%
5 dFMP/dt nv3 60.4%
6 Ewav n1/2v3 60.3%
7 dFMP/dt v1/2p2 60.2%
8 Ewav n1/6v2 60.1%
9 EWei n1/2v2 60.1%
10 EWei n1/3v2 60.0%
11 Ewav n1/2v2 59.9%
12 EWei n1/2v3 59.8%
13 dFMP/dt p2/3 59.8%
14 dFMP/dt p1/2 59.8%
15 dFMP/dt n1/6v2 59.8%
16 dFMP/dt p 59.7%
17 dFMP/dt p1/3 59.7%
18 dFMP/dt p3/2 59.3%
19 EWei n1/6v2 59.2%
20 vBs n1/3v2 59.2%
21 Ewav v4/3 59.2%
22 Bs n1/3v2 59.1%
23 Ewav v3/2 59.1%
24 Ewav v2 59.1%
25 Ewav v 59.0%

aThat percentage is calculated over 10 magnetospheric state variables,
ranging from nightside auroral power to cusp latitude.
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Solar Wind Magnetosphere“Coupling Functions” 

    x2 Y(t) X(t) 
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    y(t)=x(t)2+0.5x(t-1)4+y(t-1) x(t-1) 



Previously proposed coupling functions 
 
1.  IB=VBs by Burton et al. [1975]  
2.  ε = VB2sin4(θ/2), by Perreault and Akasofu [1978] 
3.  IW=VBTsin4(θ/2) by Wygant et al. [1983] 
4.  ISR=p1/2VBTsin4(θ/2) by Scurry and Russell [1991] 
5.  ITL=p1/2VBTsin6(θ/2) by Temerin and Li [2006] 
6.  IN=V4/3BT

2/3sin8/3(θ/2) by Newell et al. [2007]  
7.  IV=n1/6V4/3BTsin4(θ/2) by Vasyliunas et al. [1982]  

Coupling Function NERR 
p1/2VBTsin6(θ/2)(t-1) 31.32 

VBs(t-1) 12.76 
n1/6V4/3BTsin4(θ/2)(t-1) 10.30 
p1/2VBTsin4(θ/2)(t-1) 8.37 

Dst(t-2) 7.23 



  p1/2V2BTsin6(θ/2)  14.0 

 p1/2V4/3BTsin6(θ/2)  12.5 

P1/2VBTsin6(θ/2) 12.1 

VBs 8.91 

sin6(θ/2)   or    sin4(θ/2)? 
 

Where sin4(θ/2)  did appear from?      



Kan and Lee (1978) model 

ER =VsBs sin
θ
2
!
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Reconnection Electric field for two magnetic 
fields of equal magnitudes: Sonnerup (1974) 
 Russell and Atkinson (1973) 

Φ = ∫ ER⊥dl⊥ = ∫ VsBs sin
2 θ
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Φ =VsBs sin
3 θ
2
$

%
&
'

(
)l0

Kan and Lee stated that only perpendicular component of the electric 
field contributes to the potential across the polar 

Finally Kan and Lee argued that power delivered by solar wind 
dynamo is proportional to potential square divided effective system 
resistance: 

P = Φ
2

R
=Vs

2Bs
2 sin6 θ
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Approach  to the derivation of  continuous 
analytical model  

Input-Output 
 Data sets 

Continuous time 
Model 

Discrete time 
model 

Discrete 
Spectrum 

Continuous 
Spectra 



Reconstruction of Nonlinear Continuous Time 
Models 
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Forecasting Dst with Continuous Time Model (1) 



Analysis in the frequency domain  
Second  order  transfer function H2(f1,f2)   

 
 

•  Dominant ridge-like maximum: 021 →+ ff Energy storage 



 
 

021 →+ ff

Analysis in the frequency domain  
Second  order  transfer function H2(f1,f2)   

•  Dominant ridge-like maximum: 
Energy storage 



In the absence of the input: 
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The decay time of the model  in the absence of the input is 
independent both upon Dst and VBs 
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Solution of the non-homogeneous equation 
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Burton, McPheron, Russell model 
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 Decay time τ-VBs, 
 O’Brien, McPheron, 2000 
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 Decay time τ-VBs, 
 O’Brien, McPheron, 2000 



1st order Markov approach: 
 Decay time τ-Dst relation, (Dasso, et al., JGR, 2002). 

Assumption: Once the decay phase starts, energy 
injection is negligible 

τ 

Dst 

τ 

Main Conclusions: For intense storms  the values of τ 
decrease with the intensity of the storm. 



Discussion 

1. τ ≈ 2.4exp 9.74
4.69+VBs

"

#
$

%

&
'   O'Brien, McPherron., JGR, 7707,2000. 

In the case of   'no input'   this estimate leads to:τ ≈19.14 
2.  Dasso et al., (JGR, 10,1029,2002) have shown that  Dst

 decay times   have values between about 5 and 25 hours. Stronger storms 

exibit shorter decay time. As stronger storms assume higher value of
0

t

∫ VBs (t)dt,

τ ≈
19.282(hours)

1+ 0.0075
t

VBs (t)
0

t

∫ dt



Conclusion: 

1) Whenever a theory appears to you as the only possible one, take 
this as a sign that you have neither understood the theory nor the 
problem which it was intended to solve.  (KP) 
 2) Data  are the main source progress and  advanced data analysis 
technique  is important tool not only in temporal  validation of  
hypotheses  but also to falsify=nullify them.   


