

COLLEGE OF ENGINEERING CLIMATE & SPACE UNIVERSITY OF MICHIGAN

Abstract

The mechanisms that heat and accelerate the fast and slow wind have not yet been conclusively identified. Plasma properties of Helium in the solar wind are critical tracers for both processes so that understanding them is key towards gaining insight in the solar wind phenomenon, and being able to model it and predict its properties. We present a generalization of the AWSoM model, a global solar corona model with low-frequency Alfven wave turbulence (van der Holst et al., 2014) to include alpha-particle dynamics. To apportion the wave dissipation to the isotropic electron temperature, parallel and perpendicular ion temperatures, we employ the results of the theories of linear wave damping and nonlinear stochastic heating as described by Chandran et al. (2011, 2013). We account for the instabilities due to the developing temperature anisotropies for the protons (Meng et al., 2012) and alpha particles (Verscharen et al., 2013). We investigate the feasibility for Alfvén wave turbulence to simultaneously address the coronal heating and alpha-proton differential streaming.

Multi-fluid Global Solar Corona Model

- Continuity equation for the ion mass density ρ_i , where the index *i* indicates protons or alpha particles - Equation for the momentum $\rho_i \mathbf{u}_i$ includes the wave pressure (p_A) gradient force $\frac{\partial \rho_i \mathbf{u}_i}{\partial t} + \nabla \cdot (\rho_i \mathbf{u}_i \mathbf{u}_i) + \nabla \cdot \mathbf{P}_i - \mathbf{F}_{wi} + \frac{q_i n_i}{e n_e} \left[\nabla p_e - \mathbf{J} \right]$ in which $n_e = 1/e \sum q_i n_i$ is the electron number density and $\delta \mathbf{M}_{e}$ $\delta \mathbf{M}_{i}$ - The time evolution of the ion pressure $\mathbf{P}_i = p_{i\perp}I + (p_{i\parallel} - p_{i\perp})\mathbf{b}\mathbf{b}$, $p_i = (2p_{i\perp} + p_{i\parallel})/3$ $\frac{\partial p_i}{\partial t} + \nabla \cdot (p_i \mathbf{u}_i) + (\gamma - 1) p_{i\perp} (\nabla \cdot \mathbf{u}_i) + (p_{i\parallel} - p_i) \mathbf{b} \cdot (\nabla \mathbf{u}_i) + \frac{\partial p_{i\parallel}}{\partial t} + \nabla \cdot (p_{i\parallel} \mathbf{u}_i) + 2p_{i\parallel} \mathbf{b} \cdot (\nabla \mathbf{u}_i) \cdot \mathbf{b} = \frac{\delta p_{i\parallel}}{\delta t} + 2Q_{i\parallel}$ $\frac{\partial p_e}{\partial t} + \nabla \cdot (p_e \mathbf{u}_e) + (\gamma - 1) p_e \nabla \cdot \mathbf{u}_e = \frac{\delta p_e}{\delta t} + (\gamma - 1)(\gamma - 1)(\gamma - 1) (\gamma - 1) (\gamma$ protons only. The wave reflection is due to Alfvén speed gradients along the field lines [van der Holst et al. (2014)]. - The induction equation $\frac{\partial \mathbf{B}}{\partial t} - \nabla \times (\mathbf{u}_+ \times \mathbf{B}) = 0$

This work was supported by the NSF grant AGS 1322543. The research leading to these results was partly funded by the European Union's Horizon 2020 research and innovation program under grant agreement No 637302 PROGRESS.

PROGRESS

Global Multi-Fluid Solar Corona Model with Temperature Anisotropy Bart van der Holst¹, B. Chandran², J. Kasper¹, J. Szente¹, I.V. Sokolov¹, G. Tóth¹, T.I. Gombosi¹ ¹University of Michigan, ²University of New Hampshire

Heat partitioning

 $\begin{pmatrix} c_2 \end{pmatrix}$

- Dissipation mechanisms considered are stochastic heating, electron a proton Landau and transit-time damping.
- The stochastic heating for ion i (proton or alpha particle) is:

 $(\delta u_i)^3$

 \cap

$$Q_{i\perp} = c_1 \rho_i \frac{1}{r_i} \exp\left(-\frac{1}{\varepsilon_i}\right)$$

where r_i is the gyro radius of ion i, $\varepsilon_i = \delta u_i / V_{i\perp}$, $V_{i\perp}$ is the
perpendicular ion thermal speed, c_1 , c_2 are constants. δu_i is the rms
amplitude of the **ExB** velocity fluctuation at the ion gyro radius scale

For protons:
$$\rho_p \delta u_p^2 = (w_+ + w_-) \sqrt{\frac{r_p}{L_\perp}}$$
For alpha particles:
$$\rho_p \delta u_\alpha^2 = \left\{ \left[1 + \frac{1}{r_{A\alpha}} \left(\frac{\Delta u_{\alpha p}}{V_{Ap}} \right)^2 \right] (w_+ + w_- - \frac{2}{\sqrt{r_{A\alpha}}} \frac{\Delta u_{\alpha p}}{V_{Ap}} (w_+ - w_-) \right\} \sqrt{\frac{r_p}{L_\perp}}$$

where L_{\perp} is the perpendicular correlation length, w₊ and w₋ are the densities of the forward and backward propagating Alfvén waves, r_A the ion gyro-scale Alfvén ratio, and $\Delta u_{lpha p}$ is the field-aligned velocit difference between alphas and protons.

$$\frac{\partial \rho_i}{\partial t} + \nabla \cdot \left(\rho_i \mathbf{u}_i \right) = 0$$

$$egin{aligned} & \mathbf{V} imes \mathbf{B} \end{bmatrix} = q_i n_i (\mathbf{u}_i - \mathbf{u}_+) imes \mathbf{B} -
ho_i rac{GM_\odot}{r^3} \mathbf{r} + rac{\delta \mathbf{M}_i}{\delta t} + rac{q_i n_i}{e n_e} rac{\delta \mathbf{N}}{\delta t} \ & \mathbf{u}_+ = rac{1}{2m} \sum q_i n_i \mathbf{u}_i \ & \text{is the charge-averaged ion-velocity and} \end{aligned}$$

 $en_e \stackrel{\frown}{_}$ δt and δt are the Coulomb collisional momentum exchanges and \mathbf{F}_{wi} is the force due to Alfvén waves [Isenberg et al. (1982)]

$$\cdot (\nabla \mathbf{u}_i) \cdot \mathbf{b} = \frac{\delta p_i}{\delta t} + (\gamma - 1)Q_i$$

The electron pressure p_e includes electron-ion energy exchange, heat conduction, optically thin radiative cooling, and coronal heating

$$(Q_e - Q_{\rm rad} - \nabla \cdot \mathbf{q}_e)$$

- The ion coronal heating (Q_i), parallel ion coronal heating ($Q_{i\parallel}$) and electron coronal heating (Q_e) is in this model due to turbulence dissipation of low-frequency Alfvén waves. The wave energy density w_{\pm} (+ parallel to **B**, - antiparallel) is assumed to be carried by the

	Limit	ting anisotropic
and	Protons: The instability-based anisotropic protons: The instability-based anisotropic pro- averaged pressure p unmodified: $\frac{\delta p_{\parallel}}{\delta t} = \frac{\overline{p_{\parallel}} - p_{\parallel}}{\tau}$ taken to be growth rates of these instabilities Alpha particles: Parallel-propagating Alfvén/ field) and fast-magnetosonic/whistler (FM/W unstable for significant α -particle temperature sufficient conditions are derived in Verschar	essure is relaxed t applied in firehos (Hall 1979, 1980, ion-cyclotron (A/IC waves (right-circe re anisotropy and t en et al. (2013). proto
$\frac{1}{2}$	Left panel: Marginal stability curves for protons. Pressure anisotropies in the observations can be more significant than marginal curves due to finite growth rates. Right panel: Marginal stability curves are	$\begin{bmatrix} 10\\5\\T \perp p\\T \parallel p\\1\\0.5 \end{bmatrix}$ ion cyclotr
energy i is ty	for zero alpha-proton drift speed. With nonzero drift speed more restrictive curves are obtained.	0.1

3D Tilted Dipole Result

A 3D 2.8 Gauss dipole test with 15° tilt. The He⁺⁺ concentration in the upper chromosphere is set uniform and is 7% of the proton concentration.

- The alpha/proton perpendicular temperature ratio is about 6.

- The alpha particle speed is in the fast wind about 110 km/s faster than the proton speed.

	(
Future Work	
 Account for the two-stream instability in the heliosphere, 	1.
see Verscharen et al. (2013) and references therein.	
Connect the multi-fluid solar corona model to the threaded	2.
field-line model for computational speed.	3.
 Validate this multi-fluid model with data from Helios, 	4. 2
Ulysses, WIND, ACE, and MESSENGER.	5.

SH13C-2448

c ion pressure

towards the marginal stable pressure p_{\parallel} while keeping se, mirror and proton cyclotron unstable regions. τ is 1981, Southwood & Kivelson 1993).

waves (left-circularly polarized components of electric ularly polarized components of electric field) are driven beam speed (Gary et al. 2000, 2003). Necessary and

References

B. van der Holst et al., `Alfvén Wave Solar Model (AWSoM): Coronal Heating', ApJ **782**, 81 (2014). B.D.G. Chandran et al., ApJ **743**, 197 (2011). B.D.G. Chandran et al., ApJ **776**, 45 (2013). X. Meng et al., J. Comp. Phys. 231, 3610 (2012). D. Verscharen et al., ApJ **773**, 163 (2013).