

NARMAX approach to the Space Weather forecast: results and capabilities

M. A. Balikhin, R. J. Boynton, S. N. Walker University of Sheffield, UK.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637302.

PROGRESS

Introduction to System Identification and NARMAX

System Identification

System Identification

Mapping the input to the output

- Neural Networks
- Genetic Algorithms
- Linear Prediction Filters
- NARMAX Physically Interpretable

Nonlinear

$$y(t) = F[y(t-1),...y(t-n_y),$$

$$u_1(t-1),...,u_1(t-n_{u_1}),...,$$

$$u_m(t-1),...,u_m(t-n_{u_m}),$$

$$e(t-1),...,e(t-n_e)] + e(t)$$

Nonlinear AutoRegressive

$$y(t) = F[y(t-1),...y(t-n_y),$$

$$u_1(t-1),...,u_1(t-n_{u_1}),...,$$

$$u_m(t-1),...,u_m(t-n_{u_m}),$$

$$e(t-1),...,e(t-n_e)] + e(t)$$

Nonlinear AutoRegressive Moving Average

$$y(t) = F[y(t-1), ..., y(t-n_y),$$

$$u_1(t-1), ..., u_1(t-n_{u_1}), ...,$$

$$u_m(t-1), ..., u_m(t-n_{u_m}),$$

$$e(t-1), ..., e(t-n_e)] + e(t)$$

Nonlinear AutoRegressive Moving Average with eXogenous inputs

$$y(t) = F[y(t-1),...y(t-n_y),$$

$$u_1(t-1),...,u_1(t-n_{u_1}),...,$$

$$u_m(t-1),...,u_m(t-n_{u_m}),$$

$$e(t-1),...,e(t-n_e)] + e(t)$$

Nonlinear AutoRegressive Moving Average with eXogenous inputs

$$y(t) = F[y(t-1),...y(t-n_y),$$

$$u_1(t-1),...,u_1(t-n_{u_1}),...,$$

$$u_m(t-1),...,u_m(t-n_{u_m}),$$

$$e(t-1),...,e(t-n_e)] + e(t)$$

NARMAX Model:

- Nonlinear Function *F*. e.g. Polynomial, Wavelets, etc.
 - Degree of polynomial
 - Type of wavelet
- Inputs
- System lags

Nonlinear AutoRegressive Moving Average with eXogenous inputs

$$y(t) = F[y(t-1), ..., y(t-n_y),$$

$$u_1(t-1), ..., u_1(t-n_{u_1}), ...,$$

$$u_m(t-1), ..., u_m(t-n_{u_m}),$$

$$e(t-1), ..., e(t-n_e)] + e(t)$$

NARMAX Model:

- Nonlinear Function *F*. e.g. Polynomial, Wavelets, etc.
 - Degree of polynomial
 - Type of wavelet
- Inputs
- System lags

Polynomial

- FROLS algorithm Involves three stages
 - 1. Structure selection: Error Reduction Ratio (ERR)
 - 2. Coefficient estimation
 - 3. Model validation

Sudden Functional Form 20 Reference Commencement Phase 0 B_z Dungey [1961] -20 Crooker et al. [1977] -40 Dst Index, (nT) $nv^2/2$ Chapman and Ferraro [1931] Main -60 Recovery $B_z (B_z < 0);$ Phase Phase -80 $0 (B_z > 0)$ -100 vBs Burton et al. [1975] $vB^2\sin^4(\theta_c/2)$ -120 Perrault and Akasofu [1978] -140 $vB_T^2 \sin^4(\theta_c/2)$ Variant on ε -160 $vBsin^4(\theta_c/2)$ Variant on ε -180 vB_T 267 263.5 264.5 265 265.5 266 266.5 264 Day of year, 1999 $vB_T \sin^2(\theta_c/2)$ Kan and Lee [1979] $[vB_T sin^2(\theta_c/2)]^{1/2}$ Variant on the Kan-Lee electric field Velocity $v^{4/3}B_T \sin^2(\theta_c/2) p^{1/6}$ Vasyliunas et al. [1982] $vB_T \sin^4(\theta_c/2)$ Wygant et al. [1983] Density $\left[vB_T\sin^4(\theta_c/2)\right]^2$ Variant on E_{WAV} $[vB_T\sin^4(\theta_0/2)]^{1/2}$ Variant on E_{WAV} $v^{4/3}B_T \sin^4(\theta_c/2)p^{1/6}$ Magnetic field Vasyliunas et al. [1982] $vB_T \sin^4(\theta_0/2)p$ Scurry and Russell [1991] $n^{1/2}v^2 B_T \sin^6(\theta_c/2)$ Temerin and Li [2006] Newell et al. [2008]

What solar wind parameters drives Dst index evolution?

NARMAX deduced coupling functions

NARMAX deduced coupling functions

ERR Identified Coupling Function

 $p^{1/2} V^2 B_T \sin^6(\theta/2)(t-1)$

 $p^{1/2}V^{4/3}B_T\sin^6(\theta/2)(t-1)$

 $n^{1/6}V^{4/3}B_T\sin^6(\theta/2)(t-1)$

Boynton et al., JGR, 2011

Kan and Lee, GRL 1979

$$C_B = p^{\frac{1}{2}} V^2 B_T \sin^6\left(\frac{\theta}{2}\right)$$

$$C_{KL} = \frac{V^2}{R} B_T^2 \sin^4\left(\frac{\theta}{2}\right)$$

$$\sin^6\left(\frac{\theta}{2}\right)$$
 OR $\sin^4\left(\frac{\theta}{2}\right)$?

Analytical justification of the function

Kan and Lee, GRL, 1979

The potential difference $\Phi_{\rm m}$ across the polar cap is due to the perpendicular component of the reconnection electric field, i.e., $E_{\rm R}$ sin $\theta/2$ as shown in Figure 1(b). This geometrical factor has been overlooked in the previous studies of component reconnection. Thus the polar cap potential $\Phi_{\rm m}$ can be written as

$$\Phi_{\rm m} = V_{\rm s} B_{\rm s} \sin^2 (\theta/2) \ell_{\rm o}$$
(3)

where ℓ_{o} is the effective length of the X line.

$$E_r = VB\sin(\theta/2)$$

 $E_{r\perp} = E_r \sin(\theta/2)$ Potential difference

$$\varphi = E_{r\perp} l_o \sin(\theta/2) = VB \sin^3(\theta/2) l_o$$

Power delivered by the solar wind dynamo

$$P = \frac{\varphi^2}{R} = \frac{V^2 B^2}{R} \sin^6(\theta/2) l_o$$

The power delivered by the solar wind dynamo is given by

$$P = \phi_{\rm m}^2/R = V^2 B^2 \sin^4 (\theta/2) \ell_0^2/R$$
$$= (V/R) \epsilon (t)$$
(5)

Space Weather Forecasting: GOES Electron Flux Models

Inputs Data

Velocity, Density, pressure, the Dst Index, and southward IMF

Output Data GOES EPEAD Electron Fluxes >800 keV Electron Flux >2 MeV Electron Flux

Electron flux models – SNB3GEO

>800 keV Electron flux model at geosynchronous orbit

>2 MeV Electron flux model at geosynchronous orbit

PE = 0.786 and CC = 0.894 for over 26 months of data between 14/04/2010 to 30/06/2012

Electron Flux Model – SNB³GEO

Electron flux – SNB³GEO

NOAA-REFM vs. SNB³GEO

Statistical Analysis of the Model PerformancePrediction EfficiencyCorrelation coefficient $PE = 1 - \frac{\sum_{t=1}^{N} \left[\left(y(t) - \hat{y}(t) \right)^2 \right]}{\sum_{t=1}^{N} \left[\left(y(t) - \overline{y}(t) \right)^2 \right]}$ $CC = \frac{\sum_{t=1}^{N} \left[\left(y(t) - \overline{y}(t) \right) \left(\hat{y}(t) - \overline{\hat{y}}(t) \right) \right]}{\sqrt{\sum_{t=1}^{N} \left[\left(y(t) - \overline{y}(t) \right)^2 \right] \sum_{t=1}^{N} \left[\left(\hat{y}(t) - \overline{\hat{y}}(t) \right)^2 \right]}}$

Where y(t) is the measured output at time t, \hat{y} is the forecast output, N is the length of the data and the bar indicates the mean.

The PE and CC were calculated for each of the model forecasts over the time period shown in the Table below

The PE and CC were calculated for each of the model forecasts

Electron flux – SNB³GEO

NOAA-REFM vs. SNB³GEO

Balikhin et al. [2016], Space Weather Fluxes

Model	Correlation	PE
REFM	0.73	-1.31
SNB ³ GEO	0.82	0.63

log₁₀(Fluxes)

Model	Correlation	PE
REFM	0.85	0.70
SNB ³ GEO	0.89	0.77

March 2nd, 2012 - January 1st 2014.

GOES MAGED Energy Models

- 1. 30-50 keV
- 2. 50-100 keV
- 3. 100-200 keV
- 4. 200-350 keV
- 5. 350-600 keV

Data

Inputs Data

Velocity, Density, pressure, the Dst Index, and $B_T \sin^6(\theta/2)$

The solar wind data were from the Advanced Composition Explorer (ACE) spacecraft positioned at the L1 Lagrange and supplied by the OMNI website for training the model.

Dst was supplied by the World Data Center for Geomagnetism, Kyoto.

Output Data

The output for each of the models are the daily averaged electron flux measurements taken from GOES MagED at GEO and are supplied by NOAA NWS Space Weather Prediction Center.

Data for NARMAX model

Input: The past 24 hour averages were calculated hourly for each input. Therefore, the input time lags in the algorithm, n_{um} , were hourly. For example, the input U(t-10 hours) represents the average of the points between U(t-10 hours) and U(t-34 hours). The training data used lagged inputs from 2 to 48 hours.

Output: For the training data, the 1-minute corrected electron flux values were daily averaged between 00:01:00 UTC and 00:00:00 UTC the next day for each day. The training data employed autoregressive lags for the the previous 2 days, rather than hourly past 24 hour averages to avoid oversampling.

NARMAX model:

$$J(t) = F[J(t-24h), J(t-48h),$$

$$v(t-2h), v(t-3h), ..., v(t-48h),$$

$$n(t-2h), n(t-3h), ..., n(t-48h),$$

$$p(t-2h), p(t-3h), ..., p(t-48h),$$

$$...,$$

$$e(t-24h), e(t-48h)] + e(t)$$

Where *F* was a fourth degree polynomial.

Forecast Time of NARMAX models

The amount of time that the NARMAX model is able to forecast into the future is dependent on the minimum exogenous lag within the final NARMAX model.

For example, if the minimum exogenous lag within the NARMAX model is a velocity value 10 hours ago

$$J(t) = aV(t-10) + \dots$$

Where a is the coefficient, then if we know the velocity at the present time t, then we can calculate an estimate of the electron flux, J, at time t+10 hours (a 10 hour ahead forecast)

$$J(t+10) = aV(t) + ...$$

Model Performance Figures

Model Performance Figures

Model Performance Figures

Model	Forecast Time (hours)	PE (%)	CC (%)	Period
40-50 keV	10	66.9	82.0	01.03.2013- 28.02.2015
50-100 keV	12	69.2	83.5	01.03.2013- 28.02.2015
100-200 keV	16	73.2	85.6	01.03.2013- 28.02.2015
200-350 keV	24	71.6	84.9	01.03.2013- 28.02.2015
350-300 keV	24	73.6	85.9	01.03.2013- 28.02.2015
> 800 keV	24	72.1	85.1	01.01.2011- 28.02.2015
>2MeV	24	82.3	90.9	01.0.12011- 28.02.2015

Real-time operation

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637302.

