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Near-real time IMPTAM model for low energy
electrons (Ganushkina et al., 2013, 2014, 2015)

What do we present?
IMPTAM (Inner Magnetosphere Particle Transport and Acceleration model): nowcast

model for low energy (< 200 keV) electrons in the near-Earth geospace, operating online at

http://fp7-spacecast.eu and Imptam.fmi.fi

Why this model is important?

Low energy electron fluxes are very important to specify when hazardous satellite surface
charging phenomena are considered.

They constitute the low energy part of the seed population for the high energy MeV
particles in the radiation belts

What does the model provide?
The presented model provides the low energy electron flux at all locations and at all

satellite orbits, when necessary, in the near-Earth space.

What are the drivers of the model?

The model is driven by the real time solar wind and Interplanetary Magnetic Field
parameters with 1 hour time shift for propagation to the Earth’s magnetopause, and by the
real time geomagnetic activity index Dst.
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Real-time IMPTAM

IMPTAM is run continuously with input parameters obtained from solar wind, IMF data and geomagnetic indices.
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Metrics for IMPTAM performance

Ganushkina et al., Space Weather, 2015

NRMSD Heidke Skill Score (HSS)
Normalized root-mean-square deviation
with the standard deyiations O,pe oo 25(1 — s)(H — F)
of observations s+ s(1=25)H+ (1= s)(1 = 25)F
Yy 1= Xp)* y_ _ Hit Hit + Miss
— = : : = . s =
RMSD \/ n Hit + Miss Sum of all events
NRMSD = RM>D
Oobs Perfect skill: HSS=1,

the minimum: -1
skilled prediction: NRMSD< 1

unskilled prediction: NRMSD > 1 = Significant flux dropouts not present
= 40 keV: rather small HSS but

reasonable hit and false alarm rates

0.0324 // 8.288x10* (40 keV); " Best Hit Rate for 75 keV e-
0.0153 // 3.438x10% (75 keV); = 150 keV flux constantly smaller
0.0307 // 5.737x103 (150 keV) than the observed (1 order),

hit rates reasonable, but
the HSS is very small



Inner Magnetosphere Particle Transport
and Acceleration Model (IMPTAM) for

low energy electrons
(Ganushkina et al., 2013, 2014, 2015)

¢ traces electrons with arbitrary pitch angles from the plasma sheet to the inner L-shell
regions with energies up to 300 keV in time-dependent magnetic and electric fields

¢ traces a distribution of particles in the drift approximation under the conservation
of the 1st and 2" adiabatic invariants. Liouville theorem is used to gain information
of the entire distribution function

¢ for the obtained distribution function, we apply radial diffusion by solving the
radial diffusion equation

¢ electron losses: convection outflow and pitch angle diffusion by the electron lifetimes

¢ advantage of IMPTAM: can utilize any magnetic or electric field model, including
self-consistent magnetic field and substorm-associated electromagnetic fields.



IMPTAM settings for long-term variations of
low energy electron fluxes at geostationary orbit

Magnetic field model: T96 (Dst, Psw, IMF By and Bz)
Electric field model: Boyle (Vsw, IMF B, By, Bz)
Boundary conditions: Tsyganenko and Mukai (Vsw, IMF Bz,Nsw)

Losses: Kp, magnetic field
Strong diffusion (L=6-10):

Weak diffusion (L=2-6): T4 = (7"“0 j{ Z\PBh:|
p L 1-7

Electromagnetic pulses at substorm onsets:
. 104 R2| -1E2 2 _ 5 1025+0.18Kp

(Lietal., 1998; Sarris et al., 2002)

Model driving parameters:

IMF By and Bz, IMF B, Vsw, Nsw, Psw, Kp, Dst



_ong-term variations of low energy electron fluxes:
IMPTAM vs GOES 13

IMPTAM long-term output of omni-directional electron fluxes compared statistically to
GEQOS-13 MAGED fluxes for energies of 40, 75 and 150 keV.

GOES MAGED fluxes are the only available data on electrons with energies less than 200 keV
which can be compared to IMPTAM output in near-real time.

Time period: September 2013 - March 2015.

Statistics presented: MLT-dependent fluxes organized by IMPTAM’s driving parameters,
IMF By and Bz, IMF B, Vsw, Nsw, Psw, Kp, Dst
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IMPTAM
vs GOES 13:
IMF By

Higher fluxes occupy
larger MLT areas than
observed

Peak shifted to midnight
instead of being at dawn
as observed

BUT:
Very similar pattern,
in general
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IMPTAM
vs GOES 13:
IMF B
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IMPTAM
vs GOES 13:
Psw
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IMPTAM
vs GOES 13:
Kp
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IMPTAM
vs GOES 13:
SYM-H

Higher fluxes occupy
larger MLT areas than
observed
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as observed

BUT:
Very similar pattern,
in general
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summary

IMPTAM nowcast model for low-energy (< 200 keV) electrons in the inner
magnetosphere operates online in near real time at http://fp7-spacecast.eu and imptam.fmi.fi.

Real-time geostationary GOES 13 or GOES 15 (whenever available) MAGED data on
electron fluxes for three energies of 40, 75, and 150 keV are used for comparison and
validation of IMPTAM in statistical sense by dependencies on IMF and SW parameters and
activity indices.

Notes on model performance:

On average, the model provides reasonable agreement with the data, the basic level of the
observed fluxes is reproduced.

For all dependencies: Higher fluxes occupy larger MLT areas than observed;
Peak shifted to midnight instead of being at dawn as observed,;

Presence of high fluxes in contrast to observations due to parameterization of models in
IMPTAM

BUT: Very similar patterns, in general

Missing: realistic boundary conditions, loss processes, substorms
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