System Science approach to the Space Weather Forecast

M. Balikhin

. .

<u>Participants</u>

- University of Sheffield
- Finnish Meteorological Institute
- University of Warwick
 - Skolkovo Institute of Science and Technology
 - University of Michigan
 - Space Research Institute, Ukraine
 - LPC2E, France
 - Swedish Institute for Space Physics

PROGRESS has received funding from the *European Union's Horizon 2020* under grant agreement No 637302.

Collaborators

Berkeley University

UCLA

PROGRESS

"Physics" based versus data based forecas First Principles based forecast

"Physics" based versus data based forecast First Principles based forecast

Boundary conditions

Forecast

Boundary conditions

Model of the magnetic field

Forecast

Boundary conditions

Model of the magnetic field

Forecast

Wave model for the distribution of Hiss, Chorus, EMW, EMIC

Boundary conditions

Boundary

conditions

Tsyganenko

Mukai 2003

Forecast

Forecast

Kp, AE

Various assumptions

System Identification Approach

Systems Science tools for nonlinear systems

Neural Nets

Genetic Algorithms

Fuzzy Logic

NARMAX

SVM

Frequency domain methods

The NARMAX approach

• the NARMAX model is given as: $y(k) = F[y(k-1), ..., y(k-n_y), u(k), ..., u(k-n_u), \xi(k-1), ..., \xi(k-n_{\xi})] + \xi(k)$ y(k): system output u(k): system input $\xi(k)$: noise $y(k) = F[y(k-1), ..., y(k-n_y), u(k), ..., u(k-n_u), \xi(k-1), ..., \xi(k-n_{\xi})] + \xi(k)$

 $F[\cdot]$ nonlinear function (polynomial, rational, B-spline, RBF)

The NARMAX approach

Identification methodology:

- Structure detection: Orthogonal Least-Squares estimator (ERR structure detection)
- Parameter estimation
- Model validation:

-statistical validation

-dynamical validation

$$\frac{dy}{dt} = 3.1\frac{dx}{dt} + 4.2x - \frac{xdx}{dt} + 2x^{3}$$

Model Structure: $x; x^{3}; \frac{dx}{dt}; \frac{xdx}{dt}$.

Dst

Analytical approach to coupling functions

- 1. Burton et al 1975 VBs
- 2. Perreault and Akasofu [1974] ε =VB²sin($\theta/2$)⁴lo²,
- 3. Kan and Lee 1979

Analytical approach to coupling functions

- 4. $V^{4/3}B_T \sin^2(\theta/2)P^{1/6}$, $V^{4/3}B_T \sin^4(\theta/2)P^{1/6}$ [Vasyliunas et al., 1982],
- 5. $VB_T sin^4(\theta/2)P^{1/2}$ [Scurry and Russell, 1991],
- 6. n $^{1/2}V^2B_T \sin^6(\theta/2)$ [Temerin and Li, ,2006],
- 7. $V^{4/3}B^{2/3}Tsin^{8/3}(\theta/2)$ [Newell et al., 2007],
- 8. $VB_T sin^4(\theta/2)$ [Wygant et al., 1983] and its modifications

 $[VB_T \sin^4(\theta/2)]^2$, $[VB_T \sin^4(\theta/2)]^{\frac{1}{2}}$.

Solar Wind Magnetosphere "Coupling Functions"

Name	Functional Form	Reference
Bz	Bz	Dungey [1961]
Velocity	v	Crooker et al. [1977]
Density	n	
р	$nv^2/2$	Chapman and Ferraro [1931]
Bs	$B_z (B_z < 0);$	
	$0 (B_z > 0)$	
Half-wave rectifier	vBs	Burton et al. [1975]
ε	$vB^2\sin^4(\theta_c/2)$	Perrault and Akasofu [1978]
ε_2	$vB_T^2 \sin^4(\theta_c/2)$	Variant on ε
ε_3	$vBsin^4(\theta_c/2)$	Variant on ε
Solar wind E-field	vB_T	
E_{KL}	$vB_T \sin^2(\theta_c/2)$	Kan and Lee [1979]
$E_{KL}^{1/2}$	$[vB_T sin^2(\theta_c/2)]^{1/2}$	Variant on the Kan-Lee
		electric field
E_{KLV}	$v^{4/3}B_T \sin^2(\theta_c/2) p^{1/6}$	Vasyliunas et al. [1982]
EWAV	$vB_T \sin^4(\theta_c/2)$	Wygant et al. [1983]
E_{WAV}^{2}	$\left[vB_T\sin^4(\theta_c/2)\right]^2$	Variant on E_{WAV}
$E_{WAV}^{1/2}$	$[vB_T\sin^4(\theta_0/2)]^{1/2}$	Variant on E_{WAV}
E_{WV}	$v^{4/3}B_T \sin^4(\theta_c/2)p^{1/6}$	Vasyliunas et al. [1982]
E_{SR}	$vB_T \sin^4(\theta_0/2)p^{1/2}$	Scurry and Russell [1991]
E_{TL}	$n^{1/2}v^2 B_T \sin^6(\theta_c/2)$	Temerin and Li [2006]
$d\Phi_{MP}/dt$	$v^{4/3}B_T^{2/3}\sin^{8/3}(\theta_c/2)$	This paper

From Newell et al., 2007

Data based approach

Correlation function usually is a primary tool (e.g. Newell et al., 200%)

A04218

NEWELL ET AL.: PAIRS OF COUPLING FUNCTIONS

A04218

 Table 2. Various Possible Viscous Solar Wind Coupling Functions, Ranked According to Their Ability to Predict Variance in 10

 Magnetospheric State Variables

Rank, f	Λ_{c}	Dst	AE	AU	Goes	Kp	Auro	b2i	Φ_{PC}	AL	$\Sigma r^2/n$
1. $n^{1/2}v^2$	-0.364	-0.500	0.469	0.430	-0.325	0.670	0.510	-0.520	0.319	-0.225	22.3%
2. $n^{1/3}v^2$	-0.371	-0.497	0.458	0.389	-0.353	0.678	0.512	-0.460	0.324	-0.250	21.8%
3. $n^{1/2}v^3$	-0.363	-0.517	0.452	0.383	-0.340	0.653	0.515	-0.449	0.317	-0.236	21.1%
4. $n^{1/6}v^2$	-0.353	-0.460	0.416	0.330	-0.347	0.628	0.471	-0.382	0.294	-0.254	18.5%
5. nv^{3}	-0.331	-0.507	0.425	0.421	-0.260	0.549	0.488	-0.516	0.272	-0.153	18.5%
6. $nv^{5/2}$	-0.312	-0.457	0.383	0.401	-0.239	0.525	0.448	-0.511	0.249	-0.124	16.3%
7. $v^{4/3}$	-0.374	-0.408	0.372	0.277	-0.321	0.547	0.402	-0.314	0.252	-0.250	14.7%
8. v	-0.324	-0.406	0.374	0.279	-0.321	0.537	0.399	-0.315	0.254	-0.251	14.7%
9. $v^{3/2}$	-0.321	-0.408	0.372	0.276	-0.319	0.549	0.404	-0.312	0.251	-0.249	14.7%
10. v^2	-0.317	-0.409	0.369	0.272	-0.311	0.547	0.407	-0.310	0.247	-0.246	14.4%
11. $v^{2/3}$	-0.325	-0.405	0.374	0.281	-0.311	0.503	0.396	-0.316	0.255	-0.252	14.4%
12. $v^{1/2}$	-0.325	-0.403	0.374	0.282	-0.294	0.465	0.395	-0.316	0.255	-0.252	14.0%
13. p	-0.277	-0.373	0.316	0.357	-0.202	0.469	0.391	-0.474	0.217	-0.085	12.5%
14. $p^{2/3}$	-0.272	-0.321	0.326	0.365	-0.199	0.486	0.377	-0.485	0.228	-0.101	12.4%
15. $p^{1/2}$	-0.267	-0.295	0.329	0.367	-0.194	0.482	0.366	-0.486	0.231	-0.108	12.2%
16. $p^{1/3}$	-0.193	-0.269	0.331	0.366	-0.186	0.463	0.353	-0.485	0.231	-0.115	11.7%
17. $p^{3/2}$	-0.274	-0.427	0.288	0.331	-0.183	0.394	0.397	-0.431	0.190	-0.057	11.1%
18. p^2	-0.257	-0.420	0.250	0.292	-0.150	0.288	0.387	-0.351	0.159	-0.031	8.5%
19. nv	-0.163	-0.149	0.143	0.221	-0.089	0.287	0.253	-0.325	0.136	0.004	4.0%
20. n	-0.041	0.030	0.001	0.093	0.033	0.103	0.122	-0.172	0.058	0.070	0.6%

Solar Wind Magnetosphere "Coupling Functions"

′(t)

Previously proposed coupling functions

1. $I_B = VB_s$ by Burton et al. [1975] 2. $\varepsilon = VB^2 \sin^4(\theta/2)$, by Perreault and Akasofu [1978] 3. $I_W = VB_T \sin^4(\theta/2)$ by Wygant et al. [1983] 4. $I_{SR} = p^{1/2} VB_T \sin^4(\theta/2)$ by Scurry and Russell [1991] 5. $I_{TL} = p^{1/2} VB_T \sin^6(\theta/2)$ by Temerin and Li [2006] 6. $I_N = V^{4/3} B_T^{2/3} \sin^{8/3}(\theta/2)$ by Newell et al. [2007] 7. $I_V = n^{1/6} V^{4/3} B_T \sin^4(\theta/2)$ by Vasyliunas et al. [1982]

Coupling Function	NERR
$p^{1/2}VB_T\sin^6(\theta/2)(t-1)$	31.32
$VB_s(t-1)$	12.76
$n^{1/6}V^{4/3}B_T \sin^4(\theta/2)(t-1)$	10.30
$p^{1/2}VB_T\sin^4(\theta/2)(t-1)$	8.37
$D_{st}(t-2)$	7.23

$p^{1/2}V^2B_Tsin^6(\theta/2)$	14.0
$p^{1/2}V^{4/3}B_Tsin^6(\theta/2)$	12.5
$P^{1/2}VB_{T}sin^{6}(\theta/2)$	12.1
VB _s	8.91

Where $\sin^4(\theta/2)$ did appear from?

Kan and Lee (1978) model

$$E_R = V_s B_s \sin\left(\frac{\theta}{2}\right)$$

Reconnection Electric field for two magnetic fields of equal magnitudes: Sonnerup (1974) Russell and Atkinson (1973)

Kan and Lee stated that only perpendicular component of the electric field contributes to the potential across the polar

$$\Phi = \int E_{R\perp} dl_{\perp} = \int V_s B_s \sin^2\left(\frac{\theta}{2}\right) dl \sin\left(\frac{\theta}{2}\right)$$
$$\Phi = V_s B_s \sin^3\left(\frac{\theta}{2}\right) l_0$$

Finaly Kan and Lee argued that power delivered by solar wind dynamo is proportional to potential square divided effective system resistance:

$$P = \frac{\Phi^2}{R} = V_s^2 B_s^2 \sin^6\left(\frac{\theta}{2}\right) l_0^2$$

J.R. Kan and L.C. Lee

The potential difference Φ_{m} across the polar cap is due to the perpendicular component of the reconnection electric field, i.e., $E_{R} \sin \theta/2$ as shown in Figure 1(b). This geometrical factor has been overlooked in the previous studies of component reconnection. Thus the polar cap potential Φ_{m} can be written as

$$\Phi_{\rm m} = V_{\rm s} B_{\rm s} \sin^2 (\theta/2) \ell_{\rm o}$$
(3)

where & is the effective length of the X line.

The power delivered by the solar wind dynamo is given by

$$P = \phi_m^2/R = V^2 B^2 \sin^4 (\theta/2) \ell_0^2/R$$

=
$$(V/R) \epsilon (t)$$

(5)

Forecasting D_{st}

Earth's Radiation Belts

Numerical models for the forecast of radiation belts: Data Analysis

Paulikas, G. A., and J. B. Blake (1979), Reeves et al., 2011 1.8-3.5MeV GEO

1.8-3.5 MeV: Solar wind parameters2nd order nonlinearity

Illustration by scatter plots.

1000

900

200

0

10

20

30

 $n(t-1), \text{ cm}^{-3}$

40

50

Balikhin et al., 2011

Highest 5% of E = 24.1 keV (Red)

(a)

$$[\mathbf{k} \cdot (\mathbf{V_1} - \mathbf{V_2})] > \frac{n_1 + n_2}{4\pi m_0 n_1 n_2} [(\mathbf{k} \cdot \mathbf{B_1})^2 + (\mathbf{k} \cdot \mathbf{B_2})^2],$$

[Mikhailovskii and Klimenko, 1980]: $\gamma = \frac{k_{\parallel}V_A}{2} \left[\left(\frac{V^2}{V_A^2} \right) - 4 \right]^{\frac{1}{2}}$

Illustration by scatter plots Similar to Reeves 2011.

Illustration by scatter plots Similar to Reeves 2011.

Illustration by scatter plots Similar to Reeves 2011.

Balikhin et al., 2011

Earth's Radiation Belts

		\frown	
		$E_{1}, 24.1 \mathrm{keV}$	2
	Term	ERR (%)	Selected
1	V(t)	96.928	8
5	$V^2(t)$	2.824	8
	n(t)	0.082	8
	$B_z(t)$	0.041	5
	$VB_z(t)$	0.027	3
		$E_{2,31.7 \text{keV}}$	
	Term	ERR (%)	Selected
\langle	V(t)	96.944	8
	$V^2(t)$	2.825	8
	n(t)	0.071	8
	$B_z(t)$	0.037	5
	$VB_z(t)$	0.025	4
		E_{3} 41.6keV	
	Term	ERR (%)	Selected
(V(t)	96.968	8
	$V^2(t)$	2.819	8
	n(t)	0.057	8
	$B_z(t)$	0.033	5
	$VB_z(t)$	0.022	3
		E_{4} , 62.5keV	2
	Term	ERR (%)	Selected
1	V(t)	97.014	8
	$V^2(t)$	2.798	8
	n(t)	0.035	8
	$B_z(t)$	0.028	5
	nV(t)	0.026	6

	\frown	
	<i>E</i> , 90.0keV	
Term	ERR (%)	Selected
$\overline{V(t)}$	97.062	8
$V^2(t)$	2.769	8
nV(t)	0.026	3
$VB_z(t)$	0.019	5
$B_z(t-1)$	0.019	7
	$E_{6}, 127.5 \text{keV}$	
Term	ERR (%)	Selected
$\overline{V(t)}$	74.880	8
V(t-1)	22.252	7
$V^2(t)$	2.082	7
$V^{2}(t-1)$	0.646	7
nV(t)	0.020	5
	E_{7} , 172.5keV)
Term	ERR (%)	Selected
V(t-1)	65.687	8
V(t)	31.563	7
$V^2(t-1)$	1.736	8
$V^2(t)$	0.876	6
$B_z(t-1)$	0.023	7
	E_8 270keV	
Term	ERR (%)	Selected
$\overline{V(t-1)}$	97.476	8
$V^{2}(t-1)$	2.339	8
$B_{z}(t-1)$	0.022	7
~ ()		
V(t)	0.012	6

I	$E_9, 407.5 \text{keV}$	
Term	ERR (%)	Selected
V(t-1)	84.116	8
V(t-2)	13.726	4
$V^{2}(t-1)$	1.626	8
$V^{2}(t-2)$	0.247	4
nV(t)	0.031	4
	$E_{10}, 625 \text{keV}$	
Term	ERR (%)	Selected
$\overline{V(t-1)}$	75.876	8
V(t-2)	22.275	3
$V^{2}(t-1)$	0.610	4
V(t-4)	0.243	6
$V^{2}(t-2)$	0.215	3
	$E_{1}, 925 \mathrm{keV}$	
Term	ERR $(\%)$	Selected
V(t-2)	96.162	8
n(t)	0.279	2
V(t-4)	0.238	7
n(t-4)	0.197	2
p(t)	0.195	4
1	$E_{12}, (1.3 {\rm MeV})$	
Term	ERR $(\%)$	Selected
$V^{2}(t-2)$	76.508	$\overline{7}$
nV(t-1)	2.211	3
nV(t)	1.900	2
$V^{2}(t-3)$	1.692	2
$\frac{V^2(t-4)}{2}$	1.384	7
		•

E.

Energy diffusion equation Horne et el., 2005:

$$\left\langle \frac{\partial F}{\partial t} \right\rangle = \frac{\partial}{\partial E} \left[A(E) \langle D_{EE} \rangle \frac{\partial}{\partial E} \left(\frac{F}{A(E)} \right) \right] - \frac{F}{\tau_L},$$

$$A = (E + E_0)(E + 2E_0)^{\frac{1}{2}}E^{\frac{1}{2}},$$

$$F(E, \alpha_{eq}) = \frac{A(E)}{c^3} f(\mathbf{p}, \alpha_{eq}) = \frac{(E + E_0)}{cE^{\frac{1}{2}}(E + 2E_0)^{\frac{1}{2}}} J(E, \alpha_{eq}), \quad (11)$$

$$\frac{\partial F}{\partial t} = D \frac{\partial}{\partial E} \left[E^{\beta} \frac{\partial}{\partial E} \left[\frac{F}{E^{\beta}} \right] \right], \qquad F = f E^{\frac{\beta+1}{2}} \qquad \frac{\partial f}{\partial t} = \frac{\partial^{2}}{\partial E^{2}} f + \frac{1}{E} \frac{\partial f}{\partial E} - \frac{b^{2}}{E^{2}} f,$$

$$f = T(t)Y(E) \qquad \frac{1}{T} \frac{dT}{dt} = -k^{2}, \qquad \frac{d^{2}Y}{dE^{2}} + \frac{1}{E} \frac{dY}{dE} + (k^{2} - \frac{b^{2}}{E^{2}})Y = 0$$

$$Y(E) = c_{1}(k)J_{b}(kE) + c_{2}(k)N_{b}(kE) \qquad F = \int_{0}^{\infty} dk \exp\left(-k^{2}Dt\right)C(k)J_{b}(kE)E^{\frac{\beta+1}{2}}$$

$$F_{0}(E)E^{-\frac{\beta}{2}} = \int_{0}^{\infty} dk\sqrt{kE}C(k)J_{b}(kE) \qquad C(k) = \int_{0}^{\infty} dE\sqrt{kE}F_{0}(E)E^{-\frac{\beta}{2}}J_{b}(kE)$$

$$E < mc^{2} \qquad E > mc^{2}$$

$$F = CEt^{-5/4}\exp\left(-\frac{E^{2}}{4DE_{0}^{2}t}\right) \qquad F = CE^{2}t^{-3/2}\exp\left(-\frac{E^{2}}{4DE_{0}^{2}t}\right)$$

 $E \ll mc^2$

 $E >> mc^2$

$$t_{E=0.1} : t_{E=0.2} : t_{E=0.3} = 1 : 4.10 : 9.10$$

$$t_{E=3}: t_{E=4}: t_{E=5} = 1: 1.78: 2.77$$

$$F(E, \alpha_{eq}) = \frac{A(E)}{c^3} f(\mathbf{p}, \alpha_{eq}) = \frac{(E+E_0)}{cE^{\frac{1}{2}}(E+2E_0)^{\frac{1}{2}}} J(E, \alpha_{eq}), \quad (11)$$

Horne et el., 2005

The one day ahead forecasts of the relativistic electron fluxes with energies greater than 2 MeV at GEO has been developed in Sheffield and is available in real time:

http://ssg.group.shef.ac.uk/ssg2013/UOSSW/ 2MeV_EF.html

NOAA REFM Forecast

USAF & NOAA/SWPC Boulder, CO USA

Created: Dec 3 00:14:19 2015

Comparison of REFM and SNB³GEO Forecasts (01.03.2012-03.07.2014)

Balikhin, Rodriguez, Boynton, Walker, Aryan, Sibeck, Billings (submitted to SW 2015)

$$PE = 1 - \frac{1}{N} \sum \frac{(Y(t) - Ym(t))^2}{\operatorname{var}(Y)}$$

$$C_{cor} = \frac{1}{N} \sum \frac{(Y(t) - \langle Y(t) \rangle)(Ym(t) - \langle Ym(t) \rangle)}{\sqrt{\operatorname{var}(Ym)\operatorname{var}(Y)}}$$

Comparison of REFM and SNB³GEO Forecasts

Balikhin, Rodriguez, Boynton, Walker, Aryan, Sibeck Billings, submitted to SW 201

Model	Prediction Efficiency Flux	Correlation Flux	Prediction Efficiency Log Flux	Correlation Log Flux
REFM	-1.31	0.73	0.70	0.85
SNB ³ GEO	0.63	0.82	0.77	0.89

Comparison of REFM and SNB³GEO Forecasts

Balikhin, Rodriguez, Boynton, Walker, Aryan, Sibeck Billings, submitted to SW 201

Table 2.	Contingency	tables and	Heidke skill	scores for t	he REFM	predictions.
----------	-------------	------------	--------------	--------------	---------	--------------

Fluence $(cm^{-2}sr^{-1}day^{-1})$	> 1	10^{8}	> 1	$0^{8.5}$	> 1	0^{9}
REFM HSS	0.6	66	0.4	82	0.43	37
Observation:	Yes	No	Yes	No	Yes	No
Forecast						
Yes	86	22	23	22	4	7
No	43	510	21	595	3	647

Table 3. Contingency tables and Heidke skill scores for the SNB³GEO predictions.

Fluence $(cm^{-2}sr^{-1}day^{-1})$	$> 10^{8}$	$> 10^{8.5}$	$> 10^9$
SNB ³ GEO HSS	0.738	0.634	0.612
Observation:	Yes No	Yes No	Yes No
Forecast			
Yes	$106 \ 33$	31 19	4 2
No	23 499	13 598	3 652

$$S = \frac{2(xw - yz)}{y^2 + z^2 + 2xw + (y + z)(x + w)}$$

The one day ahead forecasts of the relativistic electron fluxes with energies greater than 2 MeV at GEO has been developed in

Daal time forecast of the 59 MaV electron flux at gaagynehronous arbit

Extending SNB³GEO to lower energies

Model	Forecast Time (hours)	PE (%)	CC (%)	Period
40-50 keV	10	66.9	82.0	01.03.2013- 28.02.2015
50-100 keV	12	69.2	83.5	01.03.2013- 28.02.2015
100-200 keV	16	73.2	85.6	01.03.2013- 28.02.2015
200-350 keV	24	71.6	84.9	01.03.2013- 28.02.2015
350-300 keV	24	73.6	85.9	01.03.2013- 28.02.2015
> 800 keV	24	72.1	85.1	01.01.2011- 28.02.2015
>2MeV	24	82.3	90.9	01.0.12011- 28.02.2015

Extending SNB³GEO to lower energies

PROGRESS: wave models

• Statistical Wave models and physics of wave particle interaction

A10225

A10225

Figure 2. Equatorial wave intensity of lower band chorus as a function of L^* , MLT and geomagnetic activity for each of the five satellites.

PROGRESS: wave models LB Chorus

PROGRESS: wave models Hiss

PROGRESS: wave models EMW

EMW Spectral Observations

Most studies of the amplitudes of magnetosonic waves assume a continuous spectrum and hence the validity of the quasi-linear theory

The figure shows an overview of the STAFF spectrum analyser observations on July 6th, 2013. Occurrences o Equatorial magnetosonic waves are indicated by the red circles.

The waves appear continuous in frequency space. Thus, quasilinear theory is used to estimate their effects on electron acceleration and loss processes.

Balikhin, Shprits, Walker et al., Nature Comm, 2015

Balikhin, Shprits, Walker et al., Nature Comm, 2015

Conclusion:

1)According to our knowledge SNB³GEO model provides the most accurate forecast of daily averaged fluxes of energetic electrons (>2MeV)

2) The model that extends the forecast from 1 per day to 1 per hour is developed and undergoing assessment now.

Table 2. Various Possible Viscous Solar Wind Coupling Functions, Ranked According to Their Ability to Predict Variance in 10 Magnetospheric State Variables

Rank, <i>f</i>	$\Lambda_{\mathbf{c}}$	Dst	AE	AU	Goes	Кр	Auro	b2i	$\Phi_{\rm PC}$	AL	$\Sigma r^2/n$
1. $n^{1/2}v^2$	-0.364	-0.500	0.469	0.430	-0.325	0.670	0.510	-0.520	0.319	-0.225	22.3%
2. $n^{1/3}v^2$	-0.371	-0.497	0.458	0.389	-0.353	0.678	0.512	-0.460	0.324	-0.250	21.8%
3. $n^{1/2}v^3$	-0.363	-0.517	0.452	0.383	-0.340	0.653	0.515	-0.449	0.317	-0.236	21.1%
4. $n^{1/6}v^2$	-0.353	-0.460	0.416	0.330	-0.347	0.628	0.471	-0.382	0.294	-0.254	18.5%
5. nv^3	-0.331	-0.507	0.425	0.421	-0.260	0.549	0.488	-0.516	0.272	-0.153	18.5%
6. $nv^{5/2}$	-0.312	-0.457	0.383	0.401	-0.239	0.525	0.448	-0.511	0.249	-0.124	16.3%
7. $v^{4/3}$	-0.374	-0.408	0.372	0.277	-0.321	0.547	0.402	-0.314	0.252	-0.250	14.7%
8. v	-0.324	-0.406	0.374	0.279	-0.321	0.537	0.399	-0.315	0.254	-0.251	14.7%
9. $v^{3/2}$	-0.321	-0.408	0.372	0.276	-0.319	0.549	0.404	-0.312	0.251	-0.249	14.7%
10. v^2	-0.317	-0.409	0.369	0.272	-0.311	0.547	0.407	-0.310	0.247	-0.246	14.4%
11. $v^{2/3}$	-0.325	-0.405	0.374	0.281	-0.311	0.503	0.396	-0.316	0.255	-0.252	14.4%
12. $v^{1/2}$	-0.325	-0.403	0.374	0.282	-0.294	0.465	0.395	-0.316	0.255	-0.252	14.0%
13. p	-0.277	-0.373	0.316	0.357	-0.202	0.469	0.391	-0.474	0.217	-0.085	12.5%
14. $p^{2/3}$	-0.272	-0.321	0.326	0.365	-0.199	0.486	0.377	-0.485	0.228	-0.101	12.4%
15. $p_{1/2}^{1/2}$	-0.267	-0.295	0.329	0.367	-0.194	0.482	0.366	-0.486	0.231	-0.108	12.2%
16. $p^{1/3}$	-0.193	-0.269	0.331	0.366	-0.186	0.463	0.353	-0.485	0.231	-0.115	11.7%
17. $p^{3/2}$	-0.274	-0.427	0.288	0.331	-0.183	0.394	0.397	-0.431	0.190	-0.057	11.1%
18. p^2	-0.257	-0.420	0.250	0.292	-0.150	0.288	0.387	-0.351	0.159	-0.031	8.5%
19. <i>nv</i>	-0.163	-0.149	0.143	0.221	-0.089	0.287	0.253	-0.325	0.136	0.004	4.0%
20. n	-0.041	0.030	0.001	0.093	0.033	0.103	0.122	-0.172	0.058	0.070	0.6%

Solar Wind Magnetosphere"Coupling Functions"

 $y(t)=x(t)^{2}+0.5x(t-1)^{4}+y(t-1)x(t-1)$

Previously proposed coupling functions

1. $I_B = VB_s$ by Burton et al. [1975] 2. $\varepsilon = VB^2 \sin^4(\theta/2)$, by Perreault and Akasofu [1978] 3. $I_W = VB_T \sin^4(\theta/2)$ by Wygant et al. [1983] 4. $I_{SR} = p^{1/2} VB_T \sin^4(\theta/2)$ by Scurry and Russell [1991] 5. $I_{TL} = p^{1/2} VB_T \sin^6(\theta/2)$ by Temerin and Li [2006] 6. $I_N = V^{4/3} B_T^{2/3} \sin^{8/3}(\theta/2)$ by Newell et al. [2007] 7. $I_V = n^{1/6} V^{4/3} B_T \sin^4(\theta/2)$ by Vasyliunas et al. [1982]

Coupling Function	NERR
$p^{1/2}VB_T\sin^6(\theta/2)(t-1)$	31.32
$VB_s(t-1)$	12.76
$n^{1/6}V^{4/3}B_T \sin^4(\theta/2)(t-1)$	10.30
$p^{1/2}VB_T\sin^4(\theta/2)(t-1)$	8.37
$D_{st}(t-2)$	7.23

$p^{1/2}V^2B_Tsin^6(\theta/2)$	14.0
$p^{1/2}V^{4/3}B_Tsin^6(\theta/2)$	12.5
$P^{1/2}VB_{T}sin^{6}(\theta/2)$	12.1
VB _s	8.91

Where $\sin^4(\theta/2)$ did appear from?

Kan and Lee (1978) model

$$E_R = V_s B_s \sin\left(\frac{\theta}{2}\right)$$

Reconnection Electric field for two magnetic fields of equal magnitudes: Sonnerup (1974) Russell and Atkinson (1973)

Kan and Lee stated that only perpendicular component of the electric field contributes to the potential across the polar

$$\Phi = \int E_{R\perp} dl_{\perp} = \int V_s B_s \sin^2\left(\frac{\theta}{2}\right) dl \sin\left(\frac{\theta}{2}\right)$$
$$\Phi = V_s B_s \sin^3\left(\frac{\theta}{2}\right) l_0$$

Finally Kan and Lee argued that power delivered by solar wind dynamo is proportional to potential square divided effective system resistance:

$$P = \frac{\Phi^2}{R} = V_s^2 B_s^2 \sin^6\left(\frac{\theta}{2}\right) l_0^2$$

J.R. Kan and L.C. Lee

The potential difference Φ_{m} across the polar cap is due to the perpendicular component of the reconnection electric field, i.e., $E_{R} \sin \theta/2$ as shown in Figure 1(b). This geometrical factor has been overlooked in the previous studies of component reconnection. Thus the polar cap potential Φ_{m} can be written as

$$\Phi_{m} = V_{s}B_{s} \sin^{2} (\theta/2) \ell_{0}$$
 (3)
where ℓ_{a} is the effective length of the X line.

The power delivered by the solar wind dynamo is given by

$$P = \phi_m^2/R \approx V^2 B^2 \sin^4 (\theta/2) \ell_0^2/R$$

= $(V/R) \epsilon (t)$

(5)