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Whenever a theory appears to you 
as the only possible one, take this 
as a sign that you have neither 
understood the theory nor the 
problem which it was intended to 
solve. 
 
Karl Raimund Popper   
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System Identification Approach  
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Systems Science tools for nonlinear systems 

Genetic Algorithms 

Neural Nets 

Fuzzy Logic  

SVM 

NARMAX 

Frequency domain methods 



The NARMAX approach 

•  the NARMAX model is given as: 
 

  
y k F y k y k n u k u k n k k n ky u( ) [ ( ),... ( ), ( ),..., ( ), ( ),..., ( )] ( )= − − − − − +1 1ξ ξ ξξ

y k( ) : system output
u k( ) : system input
ξ( )k : noise

F[ ]⋅  nonlinear function (polynomial, rational, B-spline, RBF)

F[.] 

ξ( )k

y k( )u k( )



The NARMAX approach 
Identification methodology: 
 

•  Structure detection: Orthogonal Least-Squares estimator 
(ERR structure detection) 

•  Parameter estimation 
•  Model validation: 

– statistical validation 
– dynamical validation 

dy
dt
= 3.1dx

dt
+ 4.2x − xdx

dt
+ 2x3

Model Structure:   x; x3; dx
dt

; xdx
dt

.
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Analytical approach to coupling 
functions 

1.  Burton  et al 1975   VBs 

2.  Perreault and Akasofu [1974] ε=VB²sin(θ/2)4l₀²,  

3.  Kan and  Lee 1979 



Analytical approach to coupling 
functions 

4. V4/3BTsin²(θ/2)P1/6, V4/3BTsin4(θ/2)P1/6  [Vasyliunas et al., 

1982],  

5. VBTsin4(θ/2)P1/2 [Scurry and Russell,1991],  

6. n 1/2V2BTsin6(θ/2)  [Temerin and Li, ,2006],  

7.  V4/3B2/3
Tsin8/3(θ/2)  [Newell et al., 2007],  

8. VBTsin4(θ/2) [Wygant et al., 1983] and its modifications 

[VBTsin4(θ/2)]², [VBTsin4(θ/2)] ½.  



Solar Wind Magnetosphere 
“Coupling Functions” 

From Newell et al., 2007 



Data based approach 
Correlation function usually  is a primary tool  (e.g. Newell et al., 2007)  



Solar Wind Magnetosphere 
“Coupling Functions” 
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Previously proposed coupling functions 
 
1.  IB=VBs by Burton et al. [1975]  
2.  ε = VB2sin4(θ/2), by Perreault and Akasofu [1978] 
3.  IW=VBTsin4(θ/2) by Wygant et al. [1983] 
4.  ISR=p1/2VBTsin4(θ/2) by Scurry and Russell [1991] 
5.  ITL=p1/2VBTsin6(θ/2) by Temerin and Li [2006] 
6.  IN=V4/3BT

2/3sin8/3(θ/2) by Newell et al. [2007]  
7.  IV=n1/6V4/3BTsin4(θ/2) by Vasyliunas et al. [1982]  

Coupling Function NERR 
p1/2VBTsin6(θ/2)(t-1) 31.32 

VBs(t-1) 12.76 
n1/6V4/3BTsin4(θ/2)(t-1) 10.30 
p1/2VBTsin4(θ/2)(t-1) 8.37 

Dst(t-2) 7.23 



  p1/2V2BTsin6(θ/2)  14.0 

 p1/2V4/3BTsin6(θ/2)  12.5 

P1/2VBTsin6(θ/2) 12.1 

VBs 8.91 

sin6(θ/2)   or    sin4(θ/2)? 
 

Where sin4(θ/2)  did appear from?      



Kan and Lee (1978) model 

ER =VsBs sin
θ
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Reconnection Electric field for two magnetic 
fields of equal magnitudes: Sonnerup (1974) 
 Russell and Atkinson (1973) 

Φ = ∫ ER⊥dl⊥ = ∫ VsBs sin
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Kan and Lee stated that only perpendicular component of the electric 
field contributes to the potential across the polar 

Finaly Kan and Lee argued that power delivered by solar wind 
dynamo is proportional to potential square divided effective system 
resistance: 

P = Φ
2

R
=Vs

2Bs
2 sin6 θ
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Numerical models for the forecast of 
radiation belts: Data Analysis 

Paulikas, G. A., and J. B. Blake (1979), 
Reeves et al.,  2011  1.8-3.5MeV GEO 



2nd order nonlinearity 

V, n, p, Bx, By, Bz 
Parameter 

n(t-1) 
n2(t-1) 

NERR 
62.9 
15.0 

V2(t-2) 
V2(t-4) 

6.3 
4.6 

PV(t-1) 
P2(t-1) 

2.2 
1.9 

V2(t-1) 1.0 

nBz(t-2) 0.83 

1.8-3.5 MeV: Solar wind parameters 

€ 

cm−2s−1sr−1KeV −1



Illustration by scatter plots. 
Balikhin et al.,  2011 
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in Table 5 differ from those presented by Balikhin et al. [2011] but are still close to these417

values. This is because a different averaging procedure was employed. The duration of418

each of the data sets was not taken into account for the averaging procedure used by419

Balikhin et al. [2011].420

One possible explanation for the density dependence at high energies is that the various421

ULF fluctuations at the boundaries of magnetosphere could be in resonance with electrons422

of this particular energy. For example, it is well known that the threshold of the Kelvin-423

Helmholtz instability is [Chandrasekhar , 1961; Otto and Fairfield , 2000]:424

[k · (V1 −V2)] >
n1 + n2

4πm0n1n2
[(k ·B1)

2 + (k ·B2)
2], (7)

where m0 is the ion mass, B is the magnetic field and indices correspond to the two425

regions across the shear layer. In the case of a parallel propagation with the same Alfven426

velocity (VA) across the flow shear layer, the threshold becomes equal to 2VA. While the427

threshold does indeed exhibit a density dependence, it is the opposite from what is needed428

to explain the ERR results, since the threshold increases with the decrease in density. The429

growth rate, γ, of a classical Kelvin-Helmholtz instability has been calculated many times430

[Mikhailovskii and Klimenko, 1980]:431

γ =
k‖VA

2

[(

V 2

V 2
A

)

− 4

]
1

2

(8)

Again, the growth rate does not increase with the decrease in density. The other possibility432

is the saturation of the Kelvin-Helmholtz instability. Golikov et al. [1980] have shown that433

unless:434

(

ni

ne

)
1

2

<
Be

Bi

(9)
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X - 18 BOYNTON ET AL.: NARMAX ELECTRON FLUX ANALYSIS

E1, 24.1keV
Term ERR (%) Selected
V (t) 96.928 8
V 2(t) 2.824 8
n(t) 0.082 8
Bz(t) 0.041 5
V Bz(t) 0.027 3

E2, 31.7keV
Term ERR (%) Selected
V (t) 96.944 8
V 2(t) 2.825 8
n(t) 0.071 8
Bz(t) 0.037 5
V Bz(t) 0.025 4

E3, 41.6keV
Term ERR (%) Selected
V (t) 96.968 8
V 2(t) 2.819 8
n(t) 0.057 8
Bz(t) 0.033 5
V Bz(t) 0.022 3

E4, 62.5keV
Term ERR (%) Selected
V (t) 97.014 8
V 2(t) 2.798 8
n(t) 0.035 8
Bz(t) 0.028 5
nV (t) 0.026 6

Table 2. Results of the NARMAX analysis employing a second order nonlinearity and basic

solar wind inputs. Shows the top 5 terms in the order of ERR for the electron fluxes E1 to E4

D R A F T January 24, 2012, 12:22pm D R A F T

BOYNTON ET AL.: NARMAX ELECTRON FLUX ANALYSIS X - 19

E5, 90.0keV
Term ERR (%) Selected
V (t) 97.062 8
V 2(t) 2.769 8
nV (t) 0.026 3
V Bz(t) 0.019 5
Bz(t� 1) 0.019 7

E6, 127.5keV
Term ERR (%) Selected
V (t) 74.880 8
V (t� 1) 22.252 7
V 2(t) 2.082 7
V 2(t� 1) 0.646 7
nV (t) 0.020 5

E7, 172.5keV
Term ERR (%) Selected
V (t� 1) 65.687 8
V (t) 31.563 7
V 2(t� 1) 1.736 8
V 2(t) 0.876 6
Bz(t� 1) 0.023 7

E8, 270keV
Term ERR (%) Selected
V (t� 1) 97.476 8
V 2(t� 1) 2.339 8
Bz(t� 1) 0.022 7
V (t) 0.012 6
pV (t) 0.011 4

Table 3. Results of the NARMAX analysis employing a second order nonlinearity and basic

solar wind inputs. Shows the top 5 terms in the order of ERR for the electron fluxes E5 to E8

D R A F T January 24, 2012, 12:22pm D R A F T
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E9, 407.5keV
Term ERR (%) Selected
V (t� 1) 84.116 8
V (t� 2) 13.726 4
V 2(t� 1) 1.626 8
V 2(t� 2) 0.247 4
nV (t) 0.031 4

E10, 625keV
Term ERR (%) Selected
V (t� 1) 75.876 8
V (t� 2) 22.275 3
V 2(t� 1) 0.610 4
V (t� 4) 0.243 6
V 2(t� 2) 0.215 3

E11, 925keV
Term ERR (%) Selected
V (t� 2) 96.162 8
n(t) 0.279 2
V (t� 4) 0.238 7
n(t� 4) 0.197 2
p(t) 0.195 4

E12, 1.3MeV
Term ERR (%) Selected
V 2(t� 2) 76.508 7
nV (t� 1) 2.211 3
nV (t) 1.900 2
V 2(t� 3) 1.692 2
V 2(t� 4) 1.384 7

Table 4. Results of the NARMAX analysis employing a second order nonlinearity and basic

solar wind inputs. Shows the top 5 terms in the order of ERR for the electron fluxes E9 to E12
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Figure 2. The velocity in black and the log of the electron flux, J , for energies 24.1 keV (blue),

270 keV (red) and 925 keV (green), starting on the 21st February 2004 and ending on the 6th

March 2004.
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diffusion rate due to waves in all MLT sectors is therefore
the sum of the diffusion rates shown in each panel in
Figure 6. Thus it is clear that energy diffusion can extend
to large pitch angles when the drift of the particles is taken
into account.
[23] When the MLT occurrence of the waves is taken into

account, only waves in the night and prenoon MLT sectors
contribute significantly to particle diffusion. The diffusion
rates generally decrease with increasing energy, but the key
factor to emerge is that there is a competition between
electron acceleration and electron loss that is energy depen-
dent. By assuming a separation of variables and ignoring
mixed pitch angle-energy diffusion, the timescale for elec-
tron loss can be estimated from the inverse of the pitch
angle diffusion rate at the edge of the loss cone. At 30 keV,
the loss timescale is approximately 2 hours. However, at
300 keV the loss and acceleration timescales are comparable
at about 14 hours, but at 1 MeV the acceleration timescale
becomes much shorter (3.9 days) than the loss timescale
(23 days). The change in the timescales with energy is
consistent with the concept of energy transfer, that as
particles are diffused into the loss cone at low energies they
give energy to the waves which accelerates particles at high
energies. Since the timescale for loss at 30 keV is a few
hours and since !30 keV electrons are most likely to be
responsible for the generation of chorus, a relatively con-
tinuous source of !30 keV electrons is required for signif-
icant acceleration up to a few MeV. This suggests that
prolonged substorm activity is a requirement for efficient
acceleration.

6. Evolution of the Particle Flux

[24] The timescale estimates calculated above are for the
evolution of the electron distribution function and not the
particle flux that is usually measured by satellites. To
compare with satellite observations, we first calculate the
evolution of the distribution function from the diffusion
equation and then convert this into an evolution of the
electron flux. For this initial assessment we neglect
the mixed pitch angle-energy diffusion coefficients and
use the rate of pitch angle diffusion near the loss cone to
calculate the timescale for losses tL to the atmosphere.
Since the magnitude of the mixed diffusion coefficients
usually lies between pure pitch angle and pure energy
diffusion, the results are most likely to be an underestimate
of the increase in flux. Assuming pitch angle isotropy, the
evolution of the equatorial energy distribution function F(E,
aeq) can be obtained by bounce averaging (2) and writing
hDppi in terms of the bounce-averaged energy diffusion
coefficient hDEEi and is given by
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and where the last term represents losses to the atmosphere
due to wave-particle interactions. The distribution function

F(E, aeq) in (9) is a function of energy, not momentum, and
is related to the flux J(E, aeq) by
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where we have used f = J/p2. For initial conditions we use
the electron flux perpendicular to the ambient magnetic field
at L = 4.5 measured by the CRRES satellite on 13 October
1990 (orbit 187) during the recovery phase of a magnetic
storm [Meredith et al., 2002a, 2002b]. The flux, measured
at 18 logarithmically spaced intervals between 0.28 and
1.58 MeV, was interpolated onto a high-resolution regular
grid of 500 points between 0.28 and 11 MeV using linear
interpolation. The normalized energy diffusion rates (hDEEi/
E2 = 5 ' 10%5, 1.5 ' 10%5, and 3' 10%6 s%1) at energies of
100, 300, and 1000 keV, respectively, were also interpolated
onto the same high-resolution grid together with the loss
timescales obtained from the pitch angle diffusion rates (tL =
p2/hDaai = 1.6 ' 104, 5 ' 104, and 2.0 ' 106 s). An
explicit finite difference method, accurate to second order,
was used to solve (9) subject to the condition that the flux at
the low- (0.28 MeV) and high-energy boundaries (11 MeV)
were kept constant.
[25] The time evolution of the electron flux is shown in

Figure 7. In the absence of any other transport processes,
the flux >0.8 MeV increases by more than an order of
magnitude and approaches a steady state after about
24 hours where losses balance acceleration. These time-
scales are comparable to the observed timescale for flux
increase in the radiation belts during the recovery phase of
magnetic storms [Baker et al., 1986, 1994; Kim and Chan,
1997; Meredith et al., 2002a, 2002b].

7. Discussion

[26] Our results show that there is a competition between
electron acceleration and loss for diffusion by whistler mode

Figure 7. Time evolution of the increase in the electron
flux due to whistler mode chorus waves, weighted for
latitude and the occurrence of chorus in MLT. The flux is
shown at intervals of 6 hours.
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diffusion rate due to waves in all MLT sectors is therefore
the sum of the diffusion rates shown in each panel in
Figure 6. Thus it is clear that energy diffusion can extend
to large pitch angles when the drift of the particles is taken
into account.
[23] When the MLT occurrence of the waves is taken into

account, only waves in the night and prenoon MLT sectors
contribute significantly to particle diffusion. The diffusion
rates generally decrease with increasing energy, but the key
factor to emerge is that there is a competition between
electron acceleration and electron loss that is energy depen-
dent. By assuming a separation of variables and ignoring
mixed pitch angle-energy diffusion, the timescale for elec-
tron loss can be estimated from the inverse of the pitch
angle diffusion rate at the edge of the loss cone. At 30 keV,
the loss timescale is approximately 2 hours. However, at
300 keV the loss and acceleration timescales are comparable
at about 14 hours, but at 1 MeV the acceleration timescale
becomes much shorter (3.9 days) than the loss timescale
(23 days). The change in the timescales with energy is
consistent with the concept of energy transfer, that as
particles are diffused into the loss cone at low energies they
give energy to the waves which accelerates particles at high
energies. Since the timescale for loss at 30 keV is a few
hours and since !30 keV electrons are most likely to be
responsible for the generation of chorus, a relatively con-
tinuous source of !30 keV electrons is required for signif-
icant acceleration up to a few MeV. This suggests that
prolonged substorm activity is a requirement for efficient
acceleration.

6. Evolution of the Particle Flux

[24] The timescale estimates calculated above are for the
evolution of the electron distribution function and not the
particle flux that is usually measured by satellites. To
compare with satellite observations, we first calculate the
evolution of the distribution function from the diffusion
equation and then convert this into an evolution of the
electron flux. For this initial assessment we neglect
the mixed pitch angle-energy diffusion coefficients and
use the rate of pitch angle diffusion near the loss cone to
calculate the timescale for losses tL to the atmosphere.
Since the magnitude of the mixed diffusion coefficients
usually lies between pure pitch angle and pure energy
diffusion, the results are most likely to be an underestimate
of the increase in flux. Assuming pitch angle isotropy, the
evolution of the equatorial energy distribution function F(E,
aeq) can be obtained by bounce averaging (2) and writing
hDppi in terms of the bounce-averaged energy diffusion
coefficient hDEEi and is given by
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where we have used f = J/p2. For initial conditions we use
the electron flux perpendicular to the ambient magnetic field
at L = 4.5 measured by the CRRES satellite on 13 October
1990 (orbit 187) during the recovery phase of a magnetic
storm [Meredith et al., 2002a, 2002b]. The flux, measured
at 18 logarithmically spaced intervals between 0.28 and
1.58 MeV, was interpolated onto a high-resolution regular
grid of 500 points between 0.28 and 11 MeV using linear
interpolation. The normalized energy diffusion rates (hDEEi/
E2 = 5 ' 10%5, 1.5 ' 10%5, and 3' 10%6 s%1) at energies of
100, 300, and 1000 keV, respectively, were also interpolated
onto the same high-resolution grid together with the loss
timescales obtained from the pitch angle diffusion rates (tL =
p2/hDaai = 1.6 ' 104, 5 ' 104, and 2.0 ' 106 s). An
explicit finite difference method, accurate to second order,
was used to solve (9) subject to the condition that the flux at
the low- (0.28 MeV) and high-energy boundaries (11 MeV)
were kept constant.
[25] The time evolution of the electron flux is shown in

Figure 7. In the absence of any other transport processes,
the flux >0.8 MeV increases by more than an order of
magnitude and approaches a steady state after about
24 hours where losses balance acceleration. These time-
scales are comparable to the observed timescale for flux
increase in the radiation belts during the recovery phase of
magnetic storms [Baker et al., 1986, 1994; Kim and Chan,
1997; Meredith et al., 2002a, 2002b].

7. Discussion

[26] Our results show that there is a competition between
electron acceleration and loss for diffusion by whistler mode

Figure 7. Time evolution of the increase in the electron
flux due to whistler mode chorus waves, weighted for
latitude and the occurrence of chorus in MLT. The flux is
shown at intervals of 6 hours.
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diffusion rate due to waves in all MLT sectors is therefore
the sum of the diffusion rates shown in each panel in
Figure 6. Thus it is clear that energy diffusion can extend
to large pitch angles when the drift of the particles is taken
into account.
[23] When the MLT occurrence of the waves is taken into

account, only waves in the night and prenoon MLT sectors
contribute significantly to particle diffusion. The diffusion
rates generally decrease with increasing energy, but the key
factor to emerge is that there is a competition between
electron acceleration and electron loss that is energy depen-
dent. By assuming a separation of variables and ignoring
mixed pitch angle-energy diffusion, the timescale for elec-
tron loss can be estimated from the inverse of the pitch
angle diffusion rate at the edge of the loss cone. At 30 keV,
the loss timescale is approximately 2 hours. However, at
300 keV the loss and acceleration timescales are comparable
at about 14 hours, but at 1 MeV the acceleration timescale
becomes much shorter (3.9 days) than the loss timescale
(23 days). The change in the timescales with energy is
consistent with the concept of energy transfer, that as
particles are diffused into the loss cone at low energies they
give energy to the waves which accelerates particles at high
energies. Since the timescale for loss at 30 keV is a few
hours and since !30 keV electrons are most likely to be
responsible for the generation of chorus, a relatively con-
tinuous source of !30 keV electrons is required for signif-
icant acceleration up to a few MeV. This suggests that
prolonged substorm activity is a requirement for efficient
acceleration.

6. Evolution of the Particle Flux

[24] The timescale estimates calculated above are for the
evolution of the electron distribution function and not the
particle flux that is usually measured by satellites. To
compare with satellite observations, we first calculate the
evolution of the distribution function from the diffusion
equation and then convert this into an evolution of the
electron flux. For this initial assessment we neglect
the mixed pitch angle-energy diffusion coefficients and
use the rate of pitch angle diffusion near the loss cone to
calculate the timescale for losses tL to the atmosphere.
Since the magnitude of the mixed diffusion coefficients
usually lies between pure pitch angle and pure energy
diffusion, the results are most likely to be an underestimate
of the increase in flux. Assuming pitch angle isotropy, the
evolution of the equatorial energy distribution function F(E,
aeq) can be obtained by bounce averaging (2) and writing
hDppi in terms of the bounce-averaged energy diffusion
coefficient hDEEi and is given by
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where we have used f = J/p2. For initial conditions we use
the electron flux perpendicular to the ambient magnetic field
at L = 4.5 measured by the CRRES satellite on 13 October
1990 (orbit 187) during the recovery phase of a magnetic
storm [Meredith et al., 2002a, 2002b]. The flux, measured
at 18 logarithmically spaced intervals between 0.28 and
1.58 MeV, was interpolated onto a high-resolution regular
grid of 500 points between 0.28 and 11 MeV using linear
interpolation. The normalized energy diffusion rates (hDEEi/
E2 = 5 ' 10%5, 1.5 ' 10%5, and 3' 10%6 s%1) at energies of
100, 300, and 1000 keV, respectively, were also interpolated
onto the same high-resolution grid together with the loss
timescales obtained from the pitch angle diffusion rates (tL =
p2/hDaai = 1.6 ' 104, 5 ' 104, and 2.0 ' 106 s). An
explicit finite difference method, accurate to second order,
was used to solve (9) subject to the condition that the flux at
the low- (0.28 MeV) and high-energy boundaries (11 MeV)
were kept constant.
[25] The time evolution of the electron flux is shown in

Figure 7. In the absence of any other transport processes,
the flux >0.8 MeV increases by more than an order of
magnitude and approaches a steady state after about
24 hours where losses balance acceleration. These time-
scales are comparable to the observed timescale for flux
increase in the radiation belts during the recovery phase of
magnetic storms [Baker et al., 1986, 1994; Kim and Chan,
1997; Meredith et al., 2002a, 2002b].

7. Discussion

[26] Our results show that there is a competition between
electron acceleration and loss for diffusion by whistler mode

Figure 7. Time evolution of the increase in the electron
flux due to whistler mode chorus waves, weighted for
latitude and the occurrence of chorus in MLT. The flux is
shown at intervals of 6 hours.
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Energy diffusion equation  
Horne et el., 2005:  
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The solution of this equation is a combination of the Bessel Jb and the Neumann Nb with

coe⇤cients that in general are arbitrary functions of k:

Y (E) = c1(k)Jb(kE) + c2(k)Nb(kE)

For physical solutions the Neumann function part should be equal to zero, since Nb di-

verges when E ⇥ 0. Therefore the solution of (6) is

F =

� ⇥

0

dk exp (�k2Dt)C(k)Jb(kE)E
�+1
2 (8)

The initial condition at t0 = 0, F (E, t0) = F0(E), should be used to find C(k):

F0(E)E��
2 =

� ⇥

0

dk
⇤
kEC(k)Jb(kE) (9)

This equation shows that the function F0(E)E��
2 is a Bessel transform image of C(k). So

C(k) can be found using the inverse Bessel transform of the initial distribution:

C(k) =

� ⇥

0

dE
⇤
kEF0(E)E��

2 Jb(kE) (10)

In general, the choice of the initial distribution will not have a strong e�ect on the the

rough estimate of the time scaling. Choosing the initial distribution with a free parameter

s:

F0(E)E��
2 =

Eb+1/2

(2s)b+1
exp(�E2

4s
), (11)

leads to the following C(k):

C(k) = kb+1/2 exp (�sk2) (12)

Such a solution can also be found by a less cumbersome way. In analogy with the di�usion

equation with constant coe⇤cients, we shall seek for the solution in the form

F = Ct�f(E2/t) (13)
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Direct substitution gives:

F (E, t) = CE(a+1)/2+|a�1|/2(Dt)�|a�1|/2�1 exp

�
� E2

4DE2
0t

⇥
(14)

In the sub-relativistic limit (case 1), � = 1
2 and

F = CEt�5/4 exp

�
� E2

4DE2
0t)

⇥
(15)

In the highly relativistic case E ⇥ E0 (case 3), � = 2 and

F = CE2t�3/2 exp

�
� E2

4DE2
0t

⇥
(16)

Both solutions (15) and (16) correspond to s = 0. It is worth noting that in contrast136

with the global solution of the di�usion equation with constant coe⌅cients, these partial137

solutions for the di�erent energy ranges do not have to conserve the particle numbers138

separately in each energy region. Only the conservation of the total particle number is139

required.140

3. Time scales of the solutions

Equation (2) can be used to translate the change of the distribution function into the141

change of fluxes. The shape of the fluxes that correspond to the solutions (15) and (16)142

are displayed in Figures 2 and 3 respectively. The fluxes are displayed for 3 values of143

normalised energy; 0.1 (solid blue), 0.3 (solid red) and 0.5 (solid black) in Figure 2 and144

3 (solid blue), 4 (solid red) and 5 (solid black) in Figure 3. In both figures all fluxes145

initially exhibit a slow change that is replaced by a steep increase and exponential decay146

after reaching a maximum. Since the function (Dt)�n exp(�E2/4Dt) reaches maximum147

at Dt = E2/4n, the time taken to reach the maximum for the di�erent energies obey the148

t ⇤ E2 time scaling, independently of n.149
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Experimental data shows that after the increase of the solar wind velocity, the increase150

of low energy fluxes occurs in less than a day, higher energy fluxes on the next day and151

so on. So it is the initiation of the steep increase of fluxes that should be studied. The152

time moment when the flux reached 10 percent of maximum have been chosen for a steep153

flux increase time. The corresponding times for the three values of normalised energy are154

tE=0.1 = 4.60⇥10�4, tE=0.2 = 1.89⇥10�3 and tE=0.3 = 4.19⇥10�3 for sub-reativistic (case155

1, Figure 2) and tE=3 = 0.386 , tE=4 = 0.685 and tE=5 = 1.067 for the highly relativistic156

(case 3, Figure 3). In the sub-relativistic case tE=0.1 : tE=0.2 : tE=0.3 = 1 : 4.10 : 9.10, In157

the highly relativistic case tE=3 : tE=4 : tE=5 = 1 : 1.78 : 2.77. As it was expected, the158

time scaling is close to the
⇤
t from the di�usion equation with constant coe⇤cients.159

A much faster increase of the energetic electron fluxes is observed in the experimental160

data at GEO. It is possible to conclude that the observed timing of the flux increase at161

GEO is much faster than expected from the local energy di�usion due to the interactions162

with observed waves. However, it can be explained by radial di�usion if the mobility of163

ions in the process is decreasing with the energy. The comparison of time scales cannot be164

used as an argument to rule out the important e�ects of energy di�usion on the population165

of energetic electrons at GEO. It is possible that the acceleration takes place due to the166

interaction with waves somewhere deeper in the magnetosphere at an L parameter in the167

range of 4 � 5. Such a process will create a maximum in the space phase in the region168

of the acceleration and initiate outward di�usion that will bring high energy electrons to169

GEO.170

The square root of time scaling should be valid for an arbitrary � as can seen from the171

way solutions (15) and (16) are obtained. This can be used to argue that the time scaling172
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diffusion rate due to waves in all MLT sectors is therefore
the sum of the diffusion rates shown in each panel in
Figure 6. Thus it is clear that energy diffusion can extend
to large pitch angles when the drift of the particles is taken
into account.
[23] When the MLT occurrence of the waves is taken into

account, only waves in the night and prenoon MLT sectors
contribute significantly to particle diffusion. The diffusion
rates generally decrease with increasing energy, but the key
factor to emerge is that there is a competition between
electron acceleration and electron loss that is energy depen-
dent. By assuming a separation of variables and ignoring
mixed pitch angle-energy diffusion, the timescale for elec-
tron loss can be estimated from the inverse of the pitch
angle diffusion rate at the edge of the loss cone. At 30 keV,
the loss timescale is approximately 2 hours. However, at
300 keV the loss and acceleration timescales are comparable
at about 14 hours, but at 1 MeV the acceleration timescale
becomes much shorter (3.9 days) than the loss timescale
(23 days). The change in the timescales with energy is
consistent with the concept of energy transfer, that as
particles are diffused into the loss cone at low energies they
give energy to the waves which accelerates particles at high
energies. Since the timescale for loss at 30 keV is a few
hours and since !30 keV electrons are most likely to be
responsible for the generation of chorus, a relatively con-
tinuous source of !30 keV electrons is required for signif-
icant acceleration up to a few MeV. This suggests that
prolonged substorm activity is a requirement for efficient
acceleration.

6. Evolution of the Particle Flux

[24] The timescale estimates calculated above are for the
evolution of the electron distribution function and not the
particle flux that is usually measured by satellites. To
compare with satellite observations, we first calculate the
evolution of the distribution function from the diffusion
equation and then convert this into an evolution of the
electron flux. For this initial assessment we neglect
the mixed pitch angle-energy diffusion coefficients and
use the rate of pitch angle diffusion near the loss cone to
calculate the timescale for losses tL to the atmosphere.
Since the magnitude of the mixed diffusion coefficients
usually lies between pure pitch angle and pure energy
diffusion, the results are most likely to be an underestimate
of the increase in flux. Assuming pitch angle isotropy, the
evolution of the equatorial energy distribution function F(E,
aeq) can be obtained by bounce averaging (2) and writing
hDppi in terms of the bounce-averaged energy diffusion
coefficient hDEEi and is given by

@F

@t

! "

¼ @

@E
A Eð ÞhDEEi

@

@E

F

A Eð Þ

# $% &

% F

tL
; ð9Þ

where

A ¼ E þ E0ð Þ E þ 2E0ð Þ
1
2E

1
2; ð10Þ

E is the kinetic energy, E0 = m0c
2 is the rest mass energy,

and where the last term represents losses to the atmosphere
due to wave-particle interactions. The distribution function

F(E, aeq) in (9) is a function of energy, not momentum, and
is related to the flux J(E, aeq) by

F E;aeq

' (

¼ A Eð Þ
c3

f p;aeq

' (

¼ E þ E0ð Þ
cE

1
2 E þ 2E0ð Þ

1
2

J E;aeq

' (

; ð11Þ

where we have used f = J/p2. For initial conditions we use
the electron flux perpendicular to the ambient magnetic field
at L = 4.5 measured by the CRRES satellite on 13 October
1990 (orbit 187) during the recovery phase of a magnetic
storm [Meredith et al., 2002a, 2002b]. The flux, measured
at 18 logarithmically spaced intervals between 0.28 and
1.58 MeV, was interpolated onto a high-resolution regular
grid of 500 points between 0.28 and 11 MeV using linear
interpolation. The normalized energy diffusion rates (hDEEi/
E2 = 5 ' 10%5, 1.5 ' 10%5, and 3' 10%6 s%1) at energies of
100, 300, and 1000 keV, respectively, were also interpolated
onto the same high-resolution grid together with the loss
timescales obtained from the pitch angle diffusion rates (tL =
p2/hDaai = 1.6 ' 104, 5 ' 104, and 2.0 ' 106 s). An
explicit finite difference method, accurate to second order,
was used to solve (9) subject to the condition that the flux at
the low- (0.28 MeV) and high-energy boundaries (11 MeV)
were kept constant.
[25] The time evolution of the electron flux is shown in

Figure 7. In the absence of any other transport processes,
the flux >0.8 MeV increases by more than an order of
magnitude and approaches a steady state after about
24 hours where losses balance acceleration. These time-
scales are comparable to the observed timescale for flux
increase in the radiation belts during the recovery phase of
magnetic storms [Baker et al., 1986, 1994; Kim and Chan,
1997; Meredith et al., 2002a, 2002b].

7. Discussion

[26] Our results show that there is a competition between
electron acceleration and loss for diffusion by whistler mode

Figure 7. Time evolution of the increase in the electron
flux due to whistler mode chorus waves, weighted for
latitude and the occurrence of chorus in MLT. The flux is
shown at intervals of 6 hours.
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Online Forecasts – Sheffield GOES Model  The one day ahead forecasts of the relativistic 
electron fluxes with energies greater than 2 
MeV at GEO has been developed in Sheffield 
and is available in real time: 
 http://ssg.group.shef.ac.uk/ssg2013/UOSSW/
2MeV_EF.html 
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The REFM plot displays roughly 30 days of observed and forecast data. Previous forecast values
are kept on screen for comparison with observed data. Plot symbols correspond to the 24-hour
>2 MeV electron fluence at geo-synchronous orbit, either observed or forecast. The forecasted
and observed fluence values for the most recently observed 24-hour period is indicated by the
dashed vertical lines. The 1, 2, and 3-day forecasts are to the right of the dashed vertical lines.
A legend in the lower left corner indicates the symbol and color-coding used for the observed
and forecast values. The lower right corner contains the latest observed and 1-3 day forecast
values in a tabular format. The values are also color-coded in the same manner as the plot
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Table 1. A comparison of the prediction e�ciencies and correlations obtained by comparing

the forecasts of the> 2MeV electron flux and log10(Flux) from the REFM and SNB3GEO models

with measurements from the GOES-13 satellite.

Model PE Flux Correlation Flux PE log10 Flux Correlation log10 Flux
REFM -1.31 0.73 0.70 0.85

SNB3GEO 0.63 0.82 0.77 0.89

Table 2. Contingency tables and Heidke skill scores for the REFM predictions.

Fluence (cm�2sr�1day�1) > 108 > 108.5 > 109

REFM HSS 0.666 0.482 0.437
Observation: Yes No Yes No Yes No
Forecast

Yes 86 22 23 22 4 7
No 43 510 21 595 3 647

Table 3. Contingency tables and Heidke skill scores for the SNB3GEO predictions.

Fluence (cm�2sr�1day�1) > 108 > 108.5 > 109

SNB3GEO HSS 0.738 0.634 0.612
Observation: Yes No Yes No Yes No
Forecast

Yes 106 33 31 19 4 2
No 23 499 13 598 3 652

Figure 1. Scatter plots of (Left panel) REFM and (Right panel) SNB3GEO one-day predictions

vs. GOES-13 observations for the period of interest (March 2nd 2012-December 31st 2013). The

diagonal is the line of perfect correlation. The lower cuto↵ in the observations corresponds to an

instrument flux background of 10 1/(cm2 sr s).
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measure [Heidke, 1926; Doswell et al., 1990; Balch, 2008]. The HSS is the ratio of the178

total number of correct predictions divided by the total number of observations, from both179

of which has been subtracted the expected number of correct forecasts by chance. Given180

w is the number of successful negative predictions, x is the number of successful positive181

predictions, y is the number of false negatives, and z is the number of false positives, the182

HSS is given by [Doswell et al., 1990]183

S =
2(xw � yz)

y

2 + z

2 + 2xw + (y + z)(x+ w)
(2)184

In the present study, a successful positive prediction is one in which the predicted daily185

fluence is above some threshold.186

4. Results

Table 1 displays the resulting values of prediction e�ciency PE and correlation187

calculated for the fluxes and their logarithms using the whole data set of fore-188

casts/measurements. With the exception of the prediction e�ciency for fluxes from189

REFM, all other parameters point to a very similar accuracy for the forecasts by the two190

models, with a marginally (⇡ 5� 10%) better accuracy in favour of SNB3GEO. The pre-191

diction e�ciency for fluxes from the REFM model has a negative value -1.2562, indicating192

it to be substantially worse than the forecasts by SNB3GEO which has a PE = 0.6313.193

The large di↵erence between the PEs for F2MeV

and log10(F2MeV

) requires some consid-194

eration of which is a better measure of model performance. The scatter plots for the two195

models are similar (Figure 1), with the somewhat greater scatter in the REFM results196

leading to slightly larger correlation values for SNB3GEO. The large di↵erences in PE for197

F2MeV

, especially the large negative PE for REFM, are dominated by the residuals due198
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Online Forecasts – Sheffield GOES Model  The one day ahead forecasts of the 
relativistic electron fluxes with 
energies greater than 2 MeV at 
GEO has been developed in 
Sheffield and is available in real 
time: 
 http://www.ssg.group.shef.ac.uk/
USSW/2MeV_EF.html.  
The PE for this model calculated 
for the period 14 April 2010  and 
12 April  2013  is equal to 0.786 

01/05/2014 21:072 MeV Electron Flux

Page 1 of 3http://www.ssg.group.shef.ac.uk/USSW/2MeV_EF.html

Real time forecast of the >2 MeV electron flux at geosynchronous orbit

A Multi Input Single Output (MISO) NARMAX model is used to provide a two day ahead forecast of the electron flux. The inputs to the model are the
daily averaged solar wind parameters. It should be noted that the two day ahead forecast will change as more data is obtained for the current day.

Real time solar wind data from ACE and electron flux data from GOES 13, both provided by the Space Weather Prediction Center, are used to compute the
model output (red), which is compared to the measured electron flux (blue).

The electron flux value at a specific time is the average of the past day. For example, an electron flux value recorded at 04.05.2012 is the average electron
flux between 00:01 UTC 03.05.2012 and 00:00 UTC 04.05.2012.

The electron flux value forecast for two days ahead is calculated from input data averaged between 00:01 UTC and present hour on the current day. For
example, at 08:00 UTC 04.05.2012, the input value recorded for 05.05.2012 will be the average value between 00:01 UTC 04.05.2012 and 08:00 UTC
04.05.2012. This input value is updated every hour, as more data becomes available for the current day, until the end of the day when the input value is set.

Data gaps in the solar wind data are indicated by missing points in the figures.

Archive of the past years model predicted output in a tabular format.

Past 30 days

Prediction Efficiency for the past 30 days =

Past 90 days

Home Electron Flux Dst Index Archive Contact

01/05/2014 21:072 MeV Electron Flux
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Past 200 days

Past year



Extending SNB3GEO to lower energies 

Model Forecast 
Time 

(hours) 

PE (%) CC (%) Period 

40-50 keV 10 66.9 82.0 01.03.2013- 
28.02.2015 

50-100 keV 12 69.2 83.5 01.03.2013- 
28.02.2015 

100-200 keV 16 73.2 85.6 01.03.2013- 
28.02.2015 

200-350 keV 24 71.6 84.9 01.03.2013- 
28.02.2015 

350-300 keV 24 73.6 85.9 01.03.2013- 
28.02.2015 

> 800 keV 24 72.1 85.1 01.01.2011- 
28.02.2015 

> 2MeV 24 82.3 90.9 01.0.12011- 
28.02.2015 
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PROGRESS: wave models 
•  Statistical Wave models and physics of wave particle interaction 

equatorial coverage is largely provided by DE1, CRRES,
Cluster 1 and THEMIS. Further out, in the region 5 < L* < 6,
the data comes mostly from CRRES, THEMIS and Double
Star TC1, and beyond L* = 6 the equatorial coverage is
largely provided by THEMIS and Double Star TC1. In
particular, the gap in the coverage in the region 4 < L* < 6
for 0800–1200 MLT in global wave models derived from
CRRES data [e.g., Meredith et al., 2001, 2003] is filled in,
primarily with data from Double Star TC1 and THEMIS.
The largest intensities, of the order 2000 pT2, are seen dur-
ing active conditions on the dawn-side.
[37] Figure 3 shows a comparison of the average intensity

of lower band chorus observed within !9" of the magnetic
equator during active conditions measured by each of the

satellites as a function of MLT for a selection of L* values
for, from bottom to top, L* = 5.5 ! 0.3, 6.5 ! 0.3 and
7.5 ! 0.3 respectively. In each case the data have been
smoothed by performing a running mean over 3 hours of
MLT. At L* = 7.5 (Figure 3, top) there is generally good
agreement, largely to within a factor of 3 or so, between the
THEMIS and Double Star TC1 data despite the average
intensities varying by almost two orders of magnitude with
MLT. Moving in, at L* = 6.5 (Figure 3, middle) there is
again good agreement, largely to within a factor of 3 or so
between the THEMIS and Double Star TC1 data between
0200 and 0800 MLT. The two Cluster 1 measurements also
show good agreement with the THEMIS and Double Star
TC1 data at 0500 and 0600 MLT. From 1000 to 1300 MLT

Figure 2. Equatorial wave intensity of lower band chorus as a function of L*, MLT and geomagnetic
activity for each of the five satellites.
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PROGRESS:  
wave models 
LB Chorus 



PROGRESS:  
wave models 

Hiss 



PROGRESS:  
wave models 

EMW 



EMW Spectral Observations 
Most studies of the amplitudes of magnetosonic waves assume a continuous spectrum 
and hence the validity of the quasi-linear theory 

The figure shows an overview 
of the STAFF spectrum analyser 
observations on July 6th, 2013. 
Occurrences o Equatorial 
magnetosonic waves are 
indicated by the red circles.  
 
The waves appear continuous in 
frequency space. Thus, quasi-
linear theory is used to estimate 
their effects on electron 
acceleration and loss processes. 



 Balikhin, Shprits, Walker et al., Nature Comm, 2015 



 Balikhin, Shprits, Walker et al., Nature Comm, 2015 



Conclusion: 

1)According to our knowledge SNB3GEO model provides the most 
accurate forecast of daily averaged fluxes of energetic electrons 
(>2MeV) 
2)   The model that extends the forecast from 1 per day to 1 per 
hour is  developed and undergoing assessment now.  



functions appear high on the list of successful pairs of
coupling functions.

4.2. Closer Look: Predicting Kp and Auroral Power
With Viscous and Merging Terms

[30] The use of a viscous term in addition to a merging
term makes a dramatic improvement in the predictability of
some indices (none more so than Kp), a moderate improve-
ment in others, and virtually no improvement in a few
(notably cusp latitude, which at low altitude depends almost
entirely on the merging rate). Here we consider two specific
indices of magnetospheric activity, Kp and auroral power.
The latter is perhaps most typical over our ensemble of
magnetospheric indices, in that the predictability improves
modestly (a few percent) when a viscous coupling function
is added. We studied two 11-year periods for Kp, 1984–
1994 and 1995–2005. The two produced nearly identical
results, with insignificantly higher correlation coefficients
for the earlier period. The results here are from 1995–2005,
the more recent period.
[31] The merging function which best predicts Kp is

dFMP/dt, which predicts 55% of the variance (r =
0.753). The best performing viscous term is actually
n1/3v2, but n1/2v2 works nearly as well, and because it
performs better overall (singly and in combination with
merging terms) we will concentrate on the latter. n1/2v2 alone
predicts an impressive 45% (r = 0.670) of the variance in Kp.
The top half of Figure 3 shows the ability of these top
merging and viscous terms to predict Kp. (The combination of
dFMP/dt and n

1/2v2 does predict Kp better than any other pair.)
[32] When both a merging term and a viscous term are

combined, the predictability rises to 75.0% (r = 0.866), as
shown in the bottom of Figure 3. For the previous 11-year
period, namely 1984-1994, the correlation is a very similar
r = 0.868. Here are the equations for the least variance
linear prediction of Kp (actually valid for both 11 year
periods):

Kp ¼ 0:05þ 2:244# 10$4dFMP=dt þ 2:844# 10$6n1=2v2

ðr ¼ 0:866Þ

(Here v is measured in km/s, n in cm$3, and B in nT. Note
predicted Kp is capped at 8.7)
[33] Although it is possible to use the time history of Kp

to do even better, this is an exceptional result from a simple
two term fit to solar wind data alone. By comparison, the
highly performing neural network model of Wing et al.
[2005], when operating from solar wind data alone (their
model 3) has r = 0.84. Thus the quite simple use of two
physics based terms, one merging and one viscous, predicts
Kp better than an optimally trained neural network.
[34] The dramatic improvement from combining a vis-

cous term with a merging term seen for Kp does not hold for
all or even most variables. Perhaps typical is the modest
improvement seen for auroral power. The best viscous term

Table 2. Various Possible Viscous Solar Wind Coupling Functions, Ranked According to Their Ability to Predict Variance in 10
Magnetospheric State Variables

Rank, f Lc Dst AE AU Goes Kp Auro b2i FPC AL Sr2/n

1. n1/2v2 $0.364 $0.500 0.469 0.430 $0.325 0.670 0.510 $0.520 0.319 $0.225 22.3%
2. n1/3v2 $0.371 $0.497 0.458 0.389 $0.353 0.678 0.512 $0.460 0.324 $0.250 21.8%
3. n1/2v3 $0.363 $0.517 0.452 0.383 $0.340 0.653 0.515 $0.449 0.317 $0.236 21.1%
4. n1/6v2 $0.353 $0.460 0.416 0.330 $0.347 0.628 0.471 $0.382 0.294 $0.254 18.5%
5. nv3 $0.331 $0.507 0.425 0.421 $0.260 0.549 0.488 $0.516 0.272 $0.153 18.5%
6. nv5/2 $0.312 $0.457 0.383 0.401 $0.239 0.525 0.448 $0.511 0.249 $0.124 16.3%
7. v4/3 $0.374 $0.408 0.372 0.277 $0.321 0.547 0.402 $0.314 0.252 $0.250 14.7%
8. v $0.324 $0.406 0.374 0.279 $0.321 0.537 0.399 $0.315 0.254 $0.251 14.7%
9. v3/2 $0.321 $0.408 0.372 0.276 $0.319 0.549 0.404 $0.312 0.251 $0.249 14.7%
10. v2 $0.317 $0.409 0.369 0.272 $0.311 0.547 0.407 $0.310 0.247 $0.246 14.4%
11. v2/3 $0.325 $0.405 0.374 0.281 $0.311 0.503 0.396 $0.316 0.255 $0.252 14.4%
12. v1/2 $0.325 $0.403 0.374 0.282 $0.294 0.465 0.395 $0.316 0.255 $0.252 14.0%
13. p $0.277 $0.373 0.316 0.357 $0.202 0.469 0.391 $0.474 0.217 $0.085 12.5%
14. p2/3 $0.272 $0.321 0.326 0.365 $0.199 0.486 0.377 $0.485 0.228 $0.101 12.4%
15. p1/2 $0.267 $0.295 0.329 0.367 $0.194 0.482 0.366 $0.486 0.231 $0.108 12.2%
16. p1/3 $0.193 $0.269 0.331 0.366 $0.186 0.463 0.353 $0.485 0.231 $0.115 11.7%
17. p3/2 $0.274 $0.427 0.288 0.331 $0.183 0.394 0.397 $0.431 0.190 $0.057 11.1%
18. p2 $0.257 $0.420 0.250 0.292 $0.150 0.288 0.387 $0.351 0.159 $0.031 8.5%
19. nv $0.163 $0.149 0.143 0.221 $0.089 0.287 0.253 $0.325 0.136 0.004 4.0%
20. n $0.041 0.030 0.001 0.093 0.033 0.103 0.122 $0.172 0.058 0.070 0.6%

Table 3. The Top 25 Pairs of Coupling Functions, and the
Percentage Variance Predicteda

Pair Rank Function 1 Function 2 Variance Predicted

1 dFMP/dt n1/2v2 61.0%
2 dFMP/dt n1/3v2 60.6%
3 Ewav n1/3v2 60.6%
4 dFMP/dt n1/2v3 60.5%
5 dFMP/dt nv3 60.4%
6 Ewav n1/2v3 60.3%
7 dFMP/dt v1/2p2 60.2%
8 Ewav n1/6v2 60.1%
9 EWei n1/2v2 60.1%
10 EWei n1/3v2 60.0%
11 Ewav n1/2v2 59.9%
12 EWei n1/2v3 59.8%
13 dFMP/dt p2/3 59.8%
14 dFMP/dt p1/2 59.8%
15 dFMP/dt n1/6v2 59.8%
16 dFMP/dt p 59.7%
17 dFMP/dt p1/3 59.7%
18 dFMP/dt p3/2 59.3%
19 EWei n1/6v2 59.2%
20 vBs n1/3v2 59.2%
21 Ewav v4/3 59.2%
22 Bs n1/3v2 59.1%
23 Ewav v3/2 59.1%
24 Ewav v2 59.1%
25 Ewav v 59.0%

aThat percentage is calculated over 10 magnetospheric state variables,
ranging from nightside auroral power to cusp latitude.
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Solar Wind Magnetosphere“Coupling Functions” 
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Previously proposed coupling functions 
 
1.  IB=VBs by Burton et al. [1975]  
2.  ε = VB2sin4(θ/2), by Perreault and Akasofu [1978] 
3.  IW=VBTsin4(θ/2) by Wygant et al. [1983] 
4.  ISR=p1/2VBTsin4(θ/2) by Scurry and Russell [1991] 
5.  ITL=p1/2VBTsin6(θ/2) by Temerin and Li [2006] 
6.  IN=V4/3BT

2/3sin8/3(θ/2) by Newell et al. [2007]  
7.  IV=n1/6V4/3BTsin4(θ/2) by Vasyliunas et al. [1982]  

Coupling Function NERR 
p1/2VBTsin6(θ/2)(t-1) 31.32 

VBs(t-1) 12.76 
n1/6V4/3BTsin4(θ/2)(t-1) 10.30 
p1/2VBTsin4(θ/2)(t-1) 8.37 

Dst(t-2) 7.23 



  p1/2V2BTsin6(θ/2)  14.0 

 p1/2V4/3BTsin6(θ/2)  12.5 

P1/2VBTsin6(θ/2) 12.1 

VBs 8.91 

sin6(θ/2)   or    sin4(θ/2)? 
 

Where sin4(θ/2)  did appear from?      



Kan and Lee (1978) model 

ER =VsBs sin
θ
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Reconnection Electric field for two magnetic 
fields of equal magnitudes: Sonnerup (1974) 
 Russell and Atkinson (1973) 

Φ = ∫ ER⊥dl⊥ = ∫ VsBs sin
2 θ
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Kan and Lee stated that only perpendicular component of the electric 
field contributes to the potential across the polar 

Finally Kan and Lee argued that power delivered by solar wind 
dynamo is proportional to potential square divided effective system 
resistance: 

P = Φ
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