Quantitative Assessment of the CCMC's Experimental Real-time SWMF-Geospace Results

2016 EGU General Assembly

Michael W. Liemohn

Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI USA liemohn@umich.edu

Coauthors: Natasha Ganushkina, Darren De Zeeuw, Dan Welling, Gabor Toth, Raluca Ilie, Tamas Gombosi, Bart van der Holst, Masha Kuznetsova, Marlo Maddox, Lutz Rastätter

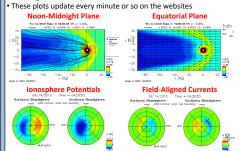
1. Motivation

Abs. EGU2016-11420

- CCMC has been running a geospace configuration of SWMF in real time since 2007
- Just the GM and IE physics modules
 So, only the BATS-R-US MHD code and the
- Ridley Ionosphere Model
- Fairly low grid resolution (<1 M cells) for MHD code (to get faster than real time in 2007)
- New version running since 2011
- · Three physics modules: GM, IE, and IM
- So, now with the Rice Convection Model for near-Earth keV plasma solution
- Better grid in MHD code and some other improvements
- Consistently running since July 2015
- Main points of this study:
 Raise awareness about the existence of these
- simulations, at CCMC and at a new site at U-M
 Conduct a quantitative assessment of these
- simulations to examine the goodness of the output
- Error statistics and contingency tables

2. Where to find these results

- A good place to start is the CCMC website, which has a link to "R2O Support" in the header menu:
 - http://ccmc.gsfc.nasa.gov/



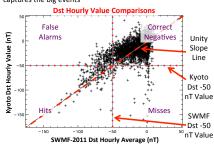
- It gives a link to the page for experimental real-time simulations:
- http://ccmc.gsfc.nasa.gov/rt_simulations.php
- It gives a link for the SWMF-Geospace real-time simulations:
 http://ccmc.gsfc.nasa.gov/cgi-bin/SWMFpred.cgi
- Also available through CCMC's Integrated Space Weather Analysis (iSWA) site, many cygnets in "Magnetosphere" and "Ionosphere"
 http://iswa.ccmc.gsfc.nasa.gov/
- We have created our own site at Michigan to highlight the existence of these simulations and show some qualitative datamodel comparisons
- http://csem.engin.umich.edu/realtime/

3. What you will find there

- Plots of the magnetosphere and ionosphere are available
 Examples (shown below) include noon-midnight and equatorial plane cuts from the MHD model and ionospheric potential and
- field-aligned current patterns

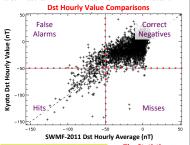
 These plots undate every minute or so on the website

4. Dst Comparison at U-M


- Our addition to the experimental runset is comparison with data
- In particular, we are focusing on Dst

- In the plot above, the black curve is the Kyoto real-time Dst index, the red curve is the SWMF-2007 simulated Dst time series, and the orange curve is the simulated Dst time series from SWMF-2011
- It is clear in this month-long plot for December 2015: the SWMF-2011 run is (qualitatively) very close to the observations

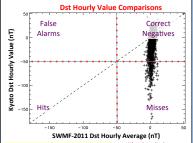
5. Analyzing the Dst time series


- For July-December 2015, we have nearly 4000 hourly values
- Let's calculate some data-model comparison statistics
- Set up a contingency table to quantify how often the code captures the big events

			The Statistics
Contingency	Dst _M <	Dst _M >	Correlation Coefficient = 0.62
Table	-50 nT	-50 nT	RMS Error = 18.3 nT
Dst _K > -50 nT	F = 179	N = 3574	Prediction Efficiency = 0.22
			Prob. of Detection = 0.72
D-+ - 50 - T	473	M = 66	Prob. False Detection = 0.048
Dst _K < -50 nT	H = 1/2	IVI = 66	Heidke Skill Score = 0.55

6. Cleaning for Restarts

- As seen in the orange time series in Box 4 above, the SWMF-2011 code suffered from occasional restarts
- This created a gap and then a "cold restart" from an empty magnetosphere
- The cold restart values were included in Box 5 stats
- Clean results: remove values within 3 h of a restart



SWIVIF-2011 DST Hourly Average (HT)								
			The Statistics					
Contingency	Dst _M <	Dst _M >	Corr. Coef. =	0.71				
Table	-50 nT	-50 nT	RMS Error =	16.0 nT				
Dst _K > -50 nT	F = 179	N = 3277	Pred. Eff. =	0.35				
			POD =	0.85				
Dst _K < -50 nT	H = 172	M = 30	POFD =	0.051				
			HSS =	0.59				

7. The SWMF-2007 Output

• We did the same analysis for the SWMF-2007 run

- Remember: no inner mag model included
- The results are not good
- Not a single value of hourly Dst below -50 nT
- This version cannot predict Dst storm intervals

			The Statistics	
Contingency	Dst _M <	Dst _M >	Corr. Coef. =	0.33
Table	-50 nT	-50 nT	RMS Error =	27.9 nT
			Pred. Eff. =	- 0.71
Dst _K > -50 nT	F = 0	N = 3891	POD =	0.00
			POFD =	0.00
Dst _K < -50 nT	H = 0	M = 266	HSS =	0.00

8. Conclusions

Real-time runs of SWMF-Geospace exist

- Available at the main CCMC website, at the CCMC's iSWA site, and at a U-M CSEM website
- The SWMF-2011 simulation is very good
- Especially when the restart intervals are removed
- High correlation coefficient, prediction efficiency, probability of detection, and Heidke skill score
- · Low probability of false detection
- This is the NOAA-SWPC operational version, about to go online in 24/7 predictive mode

· Restart issue has been identified and corrected

- Optimization issue for the number of cores assigned to the run
- It runs without these restarts now

SWMF-2007 is not good at predicting Dst

- Never predicted Dst below -50 nT in 2015
 Doesn't have an inner magnetospheric drift
- physics model included in the setup

 Inner mag model is critical for Dst prediction
- Needed to augment coarse-grid MHD simulation output in this region
- Additional data-model comparisons are planned and coming soon
- Magnetopause location, GOES fields, DMSP potentials, and AMPERE FACs

9. Acknowledgments

- This work was supported by grants from the US National Science Foundation and NASA
- Some work at U-M was supported by the University of Michigan
- Work at CCMC was supported by NASA
- Research leading to these results was partly funded by the European Union's Horizon 2020 research and innovation program under grant agreement number 637302: PROGRESS

