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1. An accurate and reliable forecast  of 
space weather hazards. 

2.Developing operational tools to predict and 
forecast them 

Objectives 
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PAPERS 

• Prediction of Geospace Radiation Environment and 

Solar Wind  Parameters, Geophysical Research 

Abstracts Vol. 17, EGU2015-PREVIEW, 2015 EGU 

General Assembly 2015. 

 



 

Forecast of the evolution of geomagnetic indices  
 
Our research concerns improvement and new development of models 
based on data driven modelling, such as CNN and NARMAX. Existing 
models for Dst and Kp will be analysed and verified with the aim of 
finding weaknesses and to suggest improvements. Solar wind and 
geomagnetic indices shall also be analysed in order to develop models for 
the identification of features, such as (but not limited to) shocks, 
sudden commencements, and substorms. Such categorisation will aid the 
model development and verification, and can also serve as alternative 
approach to models providing numerical input-output mapping. In addition 
to the development of Dst and Kp models new models will be developed 
to forecast AE. The models will be implemented for real-time operation 
at IRF and data and plots will be provided on a web server. 

Problem Description 



1. This report starts with the physical basis  and 

a brief description of the system approach. 

Following that, several examples illustrate 

practical issues in temporal and spatiotemporal 

prediction and bilinear modeling.   

 

2. An approach based on nonlinear dynamical 

models and local Lyapunov exponents are 

used to analyze measurements of the geo-

magnetic indexes and solar wind parameters. 

Introduction 
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Problem Description 

•  Recursive, robust bilinear dynamical 

model (RRBDM). It has minimal 

complexity and the same prediction limit 

as NARMAX. RRBDM provides forecasts 

of the Dst and Kp indices based on new 

robust algorithms and is driven by real 

time solar wind parameters measured at 

L1 with a time shift to account for the 

propagation of the solar wind to the 

terrestrial magnetopause and the real 

• time Dst and Kp indices.  
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Problem Description 

• The second, the Guaranteed NARMAX 

Model (GNM) also provides predictions of 

the Dst index. Its main advantage is that it 

delivers an increased prediction reliability 

in comparison to earlier SRI models. 

• Guaranteed prediction of geomagnetic 
indexes 
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Dynamical-information forecasting of 
geomagnetic indexes 

Solar wind 
parameters 

Kp,AE,Dst indexes 

Magnetosphere is 
considered as a 

nonlinear complex 
dynamical system 

Dst is sought for 
as an output of a 

nonlinear dynamical 
“black-box” 

Data are from OMNI2 database: 
http://nssdc.gsfc.nasa.gov/omniweb/ 
and Kyoto WDC for Geomagnetism: 
http://swdcdb.kugi.kyoto-u.ac.jp/ 



Problem (cont’d) 

• Predicting the evolution of geomagnetic 
indexes in solar wind flows. 

• Limit of predictability and Lyapunov 
exponents  

•  Analyze the variation of Lyapunov 

exponents of solar and geomagnetic activity 

indices during coronal mass ejections 

• Comertial forecasting services 
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Dynamical-information approach 

• Dynamical-information approach is based on 
the “black-box” models and Lyapunov 
exponents to describe magnetospheric 
dynamics. 

• Reconstruction of the dynamical model is 
based upon the application of 
multiobjective learning algorithms to 
identification of model’s structure and 
parameters.  

• A forecasting algorithm based on Lyapunov 
exponents is also proposed. 11 



• The analysis has been carried out using the technique of 
adaptive LE estimation adopted from previous works;  
• It is shown that the LE of these solar and geomagnetic 
activity indices varies rapidly during CMEs.  
• The variation in LEs creates a pattern as a precursor for 
the forthcoming CME.  
• This precursor, which is an oscillation in the values of 
LEs, begins several steps sooner than the CME's 
occurrence.  
•Then, during the CME, the LEs decrease to a small 
positive or a negative value, which demonstrates that 
during an anomaly such as a CME the chaotic 
characteristics of solar and geomagnetic activity indices 
decrease and solar and geomagnetic activity indices follow 
more regular dynamics.  

Lyapunov Spectrum  



Mathematical Models 

y(k) = F[y(k - 1),…,y(k - n), u(k - 1),  

            …, u(k - n), ξ(k - 1),…,ξ(k - n)+ξ(k)] 
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Bilinear models 
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  Methods of identifying bilinear systems from recorded 
input-output  data have been proposed.   The identified 
bilinear model is then used to forecast the evolution of the 
Dst index . For the investigation of robust forecasting, we 
perform a simulation study to demonstrate the 
applicability and the forecasting performance. 
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Forming of Learning  
Sets 

Model 
selections 

Regressor and 
structure selection 

Model testing 
and quality  

improvement 

Estimation
of  error 

prediction 

Optimal 
model 



Optimization Problem 

 

              

              y (k) = ψ(k - 1)T θ + ξ (k)      (1)  
                
 
               min    J(θ) 
               subject  to                       (2) 
 
 

D
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Optimization Problem 



Numerical Algorithms 

 For structure and parameter 
identification we use three numerical 
methods: 

1. Nonlinear parametric model 
identification using genetic algorithms 

2.Nonlinear optimization with constraints 
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Numerical results 



Numerical results 

yi = 1.36 yi−1 − 4.99 ui−1 − 0.18 yi−2 ui−1 − 0.57 yi−4 − 
 

−1.43 ui−4 ui−6 − 0.75 yi−2 + 0.53 yi−3 +0.1 yi−3 ui−1 + 
 

+0.36 yi−5 + 0.92 ui−6 ui−7 + 2.71 ui−2 +0.08 yi−3 ui−2 + 
 

+0.78 ui−2 ui−5 − 0.91 ui−5 + 0.25 ui−7 ui−12  
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Numerical results 



Results (Guaranteed  prediction) 



Black Box Prediction 

Device Risk Analysis 

Solar wind  
parameters 

Black Box Prediction 

Device Risk Analysis 

Fig. 1  Prediction and Risk Analysis 

Risk analysis 

u(k) 

z=f(v,u) 

v(k) 

y(k+1) y(k+m) 

μ(v)=Ef(v,u) 



Optimization problem with constraints 
on risk 

Let z=f(v,u) be a loss function of a device depending upon the 

control vector v and a random vector u. The control vector v 

belongs to a feasible set V, satisfying imposed requirements. We 

assume that the random vector u has a probability density p(u). 

We can define a function 

Optimization model  



Applications 

• Hybrid energy storage device  based on 

   supercapacitors 

• Space accelerometers 

• Superconducting gravimeter 

• Lasers 
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Hybrid energy storage system  based on 
supercapacitors 

P, кВт  

E, Вт·год 

Забезпечує СК 

блок 

Забезпечує Li-

іонна батарея 

Applications 
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Voltage decreases of supercapacitors 
before and after  γ-irradiation 
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Output of  the diode laser after 

irradiation by gamma radiation 
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Conclusions 
• The following models have been proposed:  
   (a) solar wind influences on devices;  
   (b) forecasting of ionizing radiation;    
   (c) risk assessment in  safety analysis. 

• We propose a new approach for radiation 

damage risk assessment of laser elements by 

cosmic radiation. This approach based on the 

Conditional Value-at-Risk measure, the 

expected loss exceeding Value-at-Risk. 
• An application of the multicriterion 

optimization method to the prediction of the 
geomagnetic indexes. Novel algorithms to the 
identification of discrete input-output models 
have been developed. 
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Conclusions (cont’d) 

• Analysis depicts the variation of LEs of these solar and geomagnetic activity 

indices during these CMEs. The LEs of these solar activity indices begin to 

vary in such a way that an obvious pattern can be detected about 10 steps 

sooner before storm begins. In addition, there is a drop off in the largest 

Lyapunov exponent during magnetic storms and CMEs. This phenomenon 

depicts that the chaotic characteristics of Dst index decrease during an 

anomaly such as a CME which has been reported in other natural systems 

such as occurrence of an epileptic seizure.  

 

• Therefore, it is meaningful to use the variation o f LEs especially for Dst 

index for al arming systems against space weather hazards. This can be 

done by using some spectral analysis tools and frequency transforms such 

as Singular Spectrum Analysis (SSA), Fast Fourier Transform (FFT), and 

Wavelet Transform as a time-frequency approach. It follows that it is 

possible to detect a CME by detecting such precursors in frequency or time-

frequency domains. 
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Conclusions (cont’d) 

• The simulation results show that the proposed technique 
provides an efficient method to get the optimum difference 
equation of the Dst index.  

• A numerical bilinear model of Dst-index was built, which 
characterizes the sporadic change of the magnetic field. It 
gives reasonable forecast forward for 5-6 hours and can be 
used to predict the geomagnetic storms.  

• An approach to  predicting the behavior of Dst-index with 
the help of local Lyapunov exponents was proposed.  

• Procedure implemented for calculating the forecast horizon 
behavior Dst-index with the use of local Lyapunov 
exponents. 
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Conclusions (cont’d) 

• In our research we tried to elicit the variation of chaotic 

trends of geomagnetic activity indices such as Dst 

indices during CMEs by estimating the Lyapunov 

exponents via an improved adaptive estimation 

method based on stochastic optimization.  

•  Two well-known CMEs are considered in this paper. 

The first one is the CME which caused the major 

magnetic storm and the nine hours black out in 

Quebec, Canada on 13 March 1989 and the second 

one is the CME on 11 January 1997 which caused the 

most well-known satellite failure (failure of Telstar 401 

satellite). 
35 



Conclusions (cont’d) 
•  Analysis depicts the variation of LEs of these solar 

and geomagnetic activity indices during these CMEs.  

• The LEs of these solar activity indices begin to vary in 

such a way that an obvious pattern can be detected 

about 12 steps sooner before storm begins. In 

addition, there is a drop off in the largest Lyapunov 

exponent during magnetic storms and CMEs.  

• This phenomenon depicts that the chaotic 

characteristics of Dst index decrease during an 

anomaly such as a CME . 

•  It follows that it is possible to detect a CME by 

detecting such precursors in frequency or time-

frequency domains. 
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Conclusions (cont’d) 

• The second, based on physical principles, provides 

good coverage throughout the whole inner 

magnetosphere but with significantly lower accuracy.  

• The combination of both approaches, as used in the 

SNB3GEO electron flux model (which combines the 

data driven NARMAX and physical VERB models), 

can overcome many of the short comings of the two 

individual models, generating improved short term 

forecasts for the whose RB region.  

• Long term RB forecasts require the estimation of solar 

wind parameters at L1 based on remote solar 

observations. principles based methodologies. 
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Conclusions (cont’d) 

• Energetic electrons within the inner 
magnetosphere can cause both deep and surface 
charging of spacecraft operating at GEO and MEO 
orbits. Reliable forecast of the fluences of these 
electrons can assist in the mitigation of undesirable 
effects on spacecraft. Previous forecasts of these 
fluences exploited either system science or first 

• The first, system science approach provides 
accurate forecasts of electron fluxes but is limited 
to regions in which continuous data are available, 
i.e. GEO.  
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Conclusions (cont’d) 

• The second, based on physical principles, provides 

good coverage throughout the whole inner 

magnetosphere but with significantly lower accuracy.  

• The combination of both approaches, as used in the 

SNB3GEO electron flux model (which combines the 

data driven NARMAX and physical VERB models), 

can overcome many of the short comings of the two 

individual models, generating improved short term 

forecasts for the whose RB region.  

• Long term RB forecasts require the estimation of solar 

wind parameters at L1 based on remote solar 

observations. principles based methodologies. 
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• Analysis depicts the variation of 
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The End 


