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Introduction 3 

Assimilation of observations of electron fluxes in the radiation belts is needed for  4 

the understanding and forecasting of physical processes in the radiation belts, and the prediction 5 

and mitigation of space weather effects in the hazardous space environment. Over a period of less 6 

than 10 years, there has been steady increase in Kalman filter applications to solve  7 

the assimilation problem of satellite observations.  However, a fundamental problem in  8 

the application of  Kalman filter is the assumption about values of the noise statistics that describe 9 

the model errors arising from the imperfect description of the process dynamics. Additional 10 

difficulties appear in the assimilation of multiple-satellite observations characterized by a large 11 

variety of unknown observation error statistics. The effectiveness of estimation and forecasting of 12 

radiation belts dynamics depends on how well the dominant physics is described by the model and 13 

the accuracy of the unknown noise statistics. However, accurate parameter estimation is a 14 

challenging problem for the case of sparse satellite observations and high variability of radiation 15 

belts dynamics. This explains why the application of a Kalman filter with an empirical choice of 16 

noise statistics that is not sufficiently justified may significantly distort the assimilation output and 17 

provide false conclusions about the dynamics of radiation belts. Therefore, the development of 18 

consistent identification methods for physical model errors and satellites observation errors, and 19 

the construction of an adaptive Kalman filter on the basis of parameter identification that optimizes 20 

the assimilation output are of prime importance for the estimation and prediction of radiation belts 21 

dynamics.  22 

In this study, we develop a new generation of assimilation models by combining the 23 

observations from multiple international scientific satellites with the state of art physical-based 24 

models to provide global reconstruction of energetic electron fluxes in the inner magnetosphere 25 

and operational forecasting of space weather conditions in the near-Earth environment. We focus 26 

on the development of consistent identification methods for unknown noise statistics such as the 27 

bias and covariance matrix of model errors that characterize the uncertainty in the dynamics of the 28 

radiation belts. We present the further improvement of data assimilation developing the 29 

identification technique to estimate the observation errors statistics that is crucially important for 30 

the optimal assimilation output. We identify the coefficients of proportionality characterizing the 31 

dependence of observation errors for satellite observations. Additional improvement and the 32 

accuracy increase of assimilation of the electron radiation belts observations is developed by the 33 

implementation of the backward optimal smoothing procedure applied to the forward Kalman filter 34 

estimates providing further refinement in our knowledge of the key physical mechanisms and 35 

leading to the operational forecasting of radiation belts.   36 

1. The state-space model construction for 3-D data assimilation 37 

The evolution of relativistic electrons in the Earth’s radiation belts can be described  by  the 3-38 

D modified Fokker-Planck equation [Schulz and  Lanzerotti,1974]  in terms of the adiabatic 39 

invariants that includes radial, pitch angle, and energy diffusion 40 
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Here 𝐷𝐿∗,𝐿∗, 𝐷𝑝𝑝, 𝐷𝛼0𝛼0
  are  the radial, momentum, and pitch angle diffusion coefficients, 2 

respectively. The lifetime parameter 𝜏 accounts for losses of particles inside the loss cone due to 3 

collisions with atmospheric neutrals, 𝑇 is a function of 𝛼 in a dipole field. Quasi-linear diffusion 4 

coefficients as inputs for the VERB code are computed with the 3-D Versatile Electron Radiation 5 

Belt Code (VERB), that is capable of computing resonance scattering rates, including first-order, 6 

Landau, and higher-order resonant scattering by obliquely propagating waves.  7 

To compute radial transport, we use the magnetic radial diffusion rates of Brautigam and  8 

Albert [2000]. 9 

The numerical solution of 3-D Fokker-Plank equation 𝑋𝑗
𝑚𝑜𝑑 at every step 𝑗 is determined  10 

on the basis of 3-D VERB code and split operator approach   in which the multidimensional 11 

solution 𝑆𝑗 is divided into three operators that are solved sequentially. The split operator technique 12 

is schematically presented in Figure 1. The obtained solution 𝑆𝑗 is linearly interpolated on  the 13 

invariant coordinates of the model (𝐿∗, 𝜇, 𝛼), the size of the model grid is 51 steps in the 𝐿∗ 14 

direction, 51 steps in the 𝜇 direction, and 18 steps in the 𝛼 direction. The 𝐿∗ grid is defined from 1 15 

RE to 6 RE, the 𝜇 grid is defined by a minimum energy of 0.01 MeV and a maximum energy of 16 

10 MeV at the outer radial boundary of  𝐿∗ = 6, and the pitch angle is defined from 0.7𝑜 to 89.7𝑜. 17 

 18 

 19 
 20 

Figure 1. The split operator scheme 21 

  22 

To apply a Kalman filter it is necessary to present the physical model of dynamics  23 

of Earth’s radiation belts in state space by constructing the dependence of the future state 24 

of the dynamical system on its present state.  25 

The state equation for fixed values of μ and α is given by 26 

𝑋𝑗+1 =   Φ𝑗+1,𝑗𝑋𝑗 + 𝑊𝑗+1Δ𝑡𝑗+1,    𝑗 = 1, … , 𝑁     (1) 27 

where 𝑋𝑗 is a 51 − dimensional state vector at step 𝑗, whose components are electron phase 28 

space densities (PSD) for all values of 𝐿∗ at fixed values of 𝜇 and 𝛼; Φ𝑗+𝑗,𝑗 is  29 

a 51 × 51 −dimensional  transition matrix, that relates the current state vector 𝑋𝑗 at step 𝑗 with the 30 

state vector 𝑋𝑗+1 at step 𝑗 + 1, Δ𝑡𝑗+1 represents time interval between measurements, and 𝑊𝑗+1 is 31 

an uncorrelated model noise that describes the errors of theoretical model of radiation belts.  32 

The measurement equation for fixed values of μ and α is given by 33 

𝑍𝑗   =   𝐻𝑗𝑋𝑗   +    𝛶𝑗           (2) 34 
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Here 𝑍𝑗 is a 𝑝 − dimensional measurement vector at step 𝑗, which components are values  1 

of PSD obtained from measured electron fluxes using Tsyganenko model TS04 for the calculation 2 

of the third invariant and interpolated onto the multidimensional grid (𝐿∗, 𝜇, 𝛼) in terms of adiabatic 3 

invariants; 𝐻𝑗 is the 𝑝 × 51 − dimensional observation matrix that translates the state vector 𝑋𝑗 to 4 

the measurement vector 𝑍𝑗, size of 𝑝 depends on number of available measurements at the current 5 

time step 𝑗; 𝛶𝑗  is an uncorrelated unbiased measurement noise that describes the PSD observation 6 

errors conditioned by the errors of electron flux measurements and the errors of PSD calculation 7 

from measured fluxes.  Statistical characteristics of model noise 𝑊𝑖 and measurement noise 𝛶𝑗  are 8 

unknown and have to be identified to provide best estimation of unknown system state. 9 

The knowledge of separate transition matrices for the split operator method :  Φ𝐿∗
, Φ𝛼 and Φ𝐸 10 

doesn’t allow us to directly determine the transition matrix Φ𝑗+1,𝑗 for 3-D model that relates state 11 

vectors 𝑋𝑗 and 𝑋𝑗+1. In order to reconstruct the transition matrix Φ𝑗+1,𝑗 we use the obtained 12 

solutions 𝑆𝑗 on the grid (𝐿∗, 𝜇, 𝛼) by successively fixing every value of pitch-angles 𝛼 and energies 13 

𝐸 on the grid and define the  transition matrix in the following way 14 

Φ𝑗+1,𝑗 = 𝑑𝑖𝑎𝑔(
𝑆𝑗+1 

𝑆𝑗
) 15 

The reconstructed matrices have diagonal form that allowed us to avoid the computational 16 

difficulties related with ill-conditioned matrices of estimation errors, and to perform the 17 

independent filtration of PSD observations at each 𝐿∗ by fixing successively every value of pitch-18 

angles 𝛼 and energies 𝐸 on the (𝐿∗, 𝜇, 𝛼) grid. 19 

 20 

2. Noise statistics identification: model and measurement errors  21 

In practice, model errors and characteristics of satellite observations are poorly known, which 22 

may cause the failure of a Kalman filter algorithm and false conclusions about the radiation belt 23 

dynamics. Correct specification of the model and measurement error statistics is necessary for the 24 

development of the next generation of radiation belt specification models providing the effective 25 

PSD reconstruction and hence the prediction and mitigation of space weather effects in the 26 

hazardous space environment. Estimate of model errors also allows us to determine the model 27 

accuracy which is usually requested by stakeholders to understand the accuracy of model 28 

predictions and estimate prediction confidence levels. Estimation of observational errors can help 29 

accurately assimilate data.  30 

This report describes the development of a technique to identify statistical characteristics of 31 

model and measurement noise for 3-D model including radial, pitch angle, and energy diffusion 32 

that is based on the same principles, but is significantly simpler for independent assimilation  of 33 

measurements for every 𝐿∗ using the one-dimensional model at state space 34 

𝑥𝑗+1 = 𝜙𝑗+1,𝑗𝑥𝑗 + 𝑤𝑗+1 Δ𝑡𝑗+1

𝑧𝑗 = 𝑥𝑗 + 𝜀𝑗                                             
        (3) 35 

where 𝑥𝑗 is a value of PSD at the considered 𝐿∗ at fixed values of pitch-angle 𝛼 and energy 𝐸 at 36 

step 𝑗,  𝜙𝑗+1,𝑗 is the diagonal element of transition matrix Φ𝑗+1,𝑗 corresponding to the given 𝐿∗, 37 

𝑤𝑗+1  is the uncorrelated noise with unknown bias 𝑞 and variance 𝜎𝑤
2 , Δ𝑡𝑗+1 is time interval  38 

between PSD observations at steps 𝑗 and 𝑗 + 1, and 𝜀𝑗 is uncorrelated unbiased measurement noise 39 

with unknown variance 𝜎𝜀
2. 40 
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 1 

2.1. The identification of model noise bias 2 

The key principle to identify the unknown error statistics lies in the construction  3 

of residuals characterizing the mismatch between an observation and an auxiliary estimate  4 

of the state vector. We construct the following residuals  5 

𝑣𝑗 = 𝑧𝑗 − 𝜙𝑗,𝑗−1𝑧𝑗−1,     𝑗 = 2,3, …        (4) 6 

where 𝑧𝑗 is the available measurement at step 𝑗 at the considered 𝐿∗, 𝜙𝑗,𝑗−1𝑧𝑗−1 is the uncorrelated 7 

sequence of auxiliary estimates of state vector component 𝑥𝑗 made only by using one measurement 8 

𝑧𝑗−1 at step 𝑗 − 1. This estimate is equivalent to that of a Kalman filter with minimal memory for 9 

a dynamical system free from noises. We will further show that the residual 𝑣𝑗  can be presented in 10 

the form of an explicit linear function of unobserved model and measurement noise terms 𝑤𝑗+1 and 11 

𝜀𝑗 of the model given by Equation (3). 12 

Substituting the measurement equation given by Equation (3) for 𝑧𝑗 and 𝑧𝑗−1 in Equation (4) 13 

the residual 𝑣𝑗  can be presented in the following way 14 

𝑣𝑗 = 𝑥𝑗 + 𝜀𝑗 − 𝜙𝑗,𝑗−1𝑥𝑗−1 − 𝜙𝑗,𝑗−1𝜀𝑗−1       (5) 15 

Let us substitute the state equation given by Equation (3) for 𝑥𝑗 in Equation (5) 16 

𝑣𝑗 = 𝑤𝑗 Δ𝑡𝑗 + 𝜀𝑗 − 𝜙𝑗,𝑗−1𝜀𝑗−1         (6) 17 

As it is seen from Equation (6) the known residual 𝑣𝑗  has a linear dependence on the model 18 

and measurement noise 𝑤𝑗  and 𝜀𝑗  and does not contain a state vector component 𝑥𝑗 on the right 19 

hand side. 20 

The next step is to find the mathematical expectation of the left and right sides of Equation (6). 21 

Taking into account that mathematical expectation 𝐸[𝑤𝑗] = 𝑞 and measurement noise 𝜀𝑗  is 22 

assumed to be unbiased, we obtain the following equality 23 

𝐸[𝜈𝑗] = 𝑞Δ𝑡𝑗          (7)  24 

Thus, the residuals 𝜈𝑗 can be presented as   25 

𝜈𝑗 = 𝑞Δ𝑡𝑗 + 𝜂𝑗 26 

where 𝜂𝑗 is an unbiased random noise 𝐸[𝜂𝑗] = 0. 27 

Then 28 

 29 

1

𝑁 − 1
∑ 𝜈𝑗 = 𝑞

1

𝑁 − 1
∑ Δ𝑡𝑗

𝑁

𝑗=2

+
1

𝑁 − 1
∑ 𝜂𝑗  

𝑁

𝑗=2

𝑁

𝑗=2

 (8) 

   30 

The term 
1

𝑁−1
∑ 𝜂𝑗  𝑁

𝑗=2 in Equation (8) approaches its mathematical expectation 𝐸[𝜂𝑗] = 0 when 31 

𝑁 → ∞ because 𝜂𝑗 and 𝜂𝑗+𝑙 are independent when 𝑗 > 1 that is conditioned by the construction 32 

of residuals 𝜈𝑗. 33 

Thus the estimate of model noise bias 𝑞 is determined form the Equation (8)  34 

𝑞̂ =
1

𝑁 − 1
∑ 𝜈𝑗  

𝑁

𝑗=2

1

𝑁 − 1
∑ Δ𝑡𝑗

𝑁

𝑗=2

⁄  (9) 
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where 𝑁 is the number of residuals 𝜈𝑗.  1 

 2 

2.2. The identification of model noise variance  3 

As the model noise bias q  is already determined on the basis of Equation (9), let us consider 4 

the squared centered residuals 𝜈𝑗 − 𝑞̂  using Equation (6) 5 

(𝑣𝑗 − 𝑞̂)
2

= ((𝑤𝑗 − 𝑞̂)Δ𝑡𝑗 + 𝜀𝑗 − 𝜙𝑗,𝑗−1𝜀𝑗−1 )
2
      (10) 6 

Taking into account that noises  𝑤𝑗 − 𝑞̂ and 𝜀𝑗  are independent white noise sequences,  7 

the mathematical expectation of both sides of Equation (10) is given by 8 

𝐸 [(𝑣𝑗 − 𝑞̂)
2

] = 𝜎𝑤
2 Δ𝑡𝑗

2 + 𝜎𝜀𝑗

2 + 𝜙𝑗,𝑗−1
2 𝜎𝜀𝑗−1

2  9 

Thus, the squared centered residuals (𝑣𝑗 − 𝑞̂)
2
can be presented as   10 

(𝑣𝑗 − 𝑞̂)
2

= 𝜎𝑤
2 Δ𝑡𝑗

2 + 𝜎𝜀𝑗

2 + 𝜙𝑗,𝑗−1
2 𝜎𝜀𝑗−1

2 + 𝜍𝑗       (11) 11 

where 𝜍𝑗  is a random noise term with the mathematical expectation 𝐸[𝜍𝑗] = 0. 12 

As follows from Equation (11), the estimate of the mathematical expectation of the squared 13 

centered residuals is given by 14 

1

𝑁 − 1
∑(𝑣𝑗 − 𝑞̂)

2
=

1

𝑁 − 1
𝜎𝑤

2 ∑ Δ𝑡𝑗
2

𝑁

𝑗=2

+
1

𝑁 − 1

𝑁

𝑗=2

∑ (𝜎𝜀𝑗
2 + 𝜙𝑗,𝑗−1

2 𝜎𝜀𝑗−1
2 )

𝑁

𝑗=2

+
1

𝑁 − 1
∑ 𝜍𝑗

𝑁

𝑗=2

 (12) 

The term 
1

𝑁 − 1
∑ 𝜍𝑗

𝑁

𝑗=2

 in Equation (12) approaches its mathematical expectation 𝐸[𝜍𝑗] = 0 

when 𝑁 → ∞ because 𝜍𝑗 and 𝜍𝑗+𝑙 are independent when 𝑙 > 1. 15 

In papers dedicated to the assimilation of PSD observations, an assumption that model and  16 

measurement errors are defined by a certain percentage of observations is often used. We assume 17 

that the variance 𝜎𝜀𝑗
2  can be presented as (𝜆𝑧𝑗)

2
, where 𝜆 are unknown coefficients to be identified 18 

on the basis of satellite measurements. Therefore, Equation (12) can be written as 19 

∑(𝑣𝑗 − 𝑞̂)
2

= 𝜎𝑤
2 ∑ Δ𝑡𝑗

2

𝑁

𝑗=2

+ 𝜆2 ∑ (𝑧𝑗
2 + 𝜙

𝑗,𝑗−1
2 𝑧𝑗−1

2 )

𝑁

𝑗=2

𝑁

𝑗=2

 (13) 

Equation (13) is a linear equation with two unknown values  𝜎𝑤
2   and 𝜆2. The peculiarity  20 

of Equation (13) lies in the fact that the number of available PSD observations is significantly 21 

smaller than the total number of L∗ bins where the error caused by model noise is accumulated.  22 

The main contribution to the right part of Equation (13) is made by first term containing  23 

the model noise variance σw
2  when the interval between measurements Δtj is significant and is 24 

greater than 20 steps, for example. In this case second term containing the measurement noise is 25 

small compared to the first one because it does not depend on Δtj. Therefore, we determine  26 

the model noise variance σw
2  neglecting the second term in the right part of Equation (13) 27 

when Δtj > 20  in the following way 28 

𝜎̂𝑤
2 = ∑(𝑣𝑗 − 𝑞̂)

𝑁

𝑗=2

/ ∑(Δ𝑡𝑗)
2

𝑁

𝑗=2

 (14) 

The identification of model noise bias 𝑞 and variance 𝜎𝑤
2  according to the developed algorithm 29 

was performed for all values of pitch-angles 𝛼 and energies 𝐸 on the grid (𝐿∗, 𝜇, 𝛼) using PSD 30 
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observations obtained from measured electron fluxes by the Van Allen Probes REPT and MagEIS 1 

instruments.  Figure 2 shows the estimates of bias 𝑞 (a) and standard deviation 𝜎𝑤 (b) for  𝐿∗ from 2 

1 to 6 using REPT Van Allen Probes measurements at fixed values of the adiabatic invariant 𝜇 =3 

2129 MeV/G and pitch angle 𝛼 = 43𝑜 for 3-D model that includes radial, energy, and pitch angle 4 

diffusion (red).  For comparison the figure also contains the identification results of bias 𝑞 (a) and 5 

standard deviation 𝜎𝑤 (b) for 1-D radial diffusion (blue). 6 

 7 
Figure 2. The identification results of model noise statistics for  𝐿∗ from 1 to 6 using PSD 8 

observations obtained from measured electron fluxes by REPT instrument of Van Allen Probes 9 

A satellite at fixed values of the adiabatic invariant 𝜇 = 2129 MeV/G and pitch angle 𝛼 = 43𝑜 10 

for 3-D model (red) that includes radial, energy, and pitch angle diffusion, and 1-D radial 11 

diffusion model (blue).  (a) The identified bias 𝑞̂ of model noise 𝑤 over one step (10 min). (b) 12 

The identified standard deviation 𝜎̂𝑤
2  of model noise 𝑤 over one step. 13 

 14 

As shown in Figure 2a, the model noise bias q for 1-D model (blue) increases with increasing 𝐿∗, 15 

while the transition to a 3-D model allows us to remove this bias (red).  Figure 2b shows that the 16 

model noise standard deviation σw for 1-D radial diffusion model (blue) increases with the 17 

increase of 𝐿∗ to the values that are 3-4 times greater than that for 3-D model including radial, 18 

energy, and pitch angle diffusion (red). This is a strong argument in favor of the more accurate 3-19 

D model compared to a 1-D model that describes only radial diffusion as model noise bias 𝑞 and 20 

standard deviation 𝜎𝑤 characterize the level of model adequacy. The smaller the values of 𝑞 and 21 

𝜎𝑤, the greater the confidence that the physical model accurately describes the state and evolution 22 

of radiation belts. The proposed approach can also be used to test different model parameters and 23 

diffusion coefficients. 24 

 25 

2.3. The identification of measurement noise variance 26 

To identify the measurement noise variance σε
2 we create the residuals, in which the weight of 27 

measurement noise ε describing observation errors is maximized, while that of model noise 𝑊 28 
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representing model errors is insignificant. It can be achieved when the interval between 1 

measurements is minimal, Δtj = 1. During this interval the temporal evolution of PSD should 2 

change insignificantly, resulting in smaller influence of model noise W on Equation (13). 3 

Therefore, we determine the coefficient of proportionality 𝜆2 and the measurement noise variance  4 

𝜎𝜀
2 = (𝜆𝑧𝑗)

2
by neglecting the first term in the right hand side of Equation (13) when Δtj = 1 in 5 

the following way 6 

𝜆 =  √∑(𝑣𝑗 − 𝑞̂)
2

𝑁

𝑗=2

/ (∑ (𝑧𝑗
2 + 𝜙

𝑗,𝑗−1
2 𝑧𝑗−1

2 )

𝑁

𝑗=2

) (15) 

The identification results of proportionality coefficients  𝜆 are presented in Figure 3. 7 

 8 

 9 
Figure 3. Coefficients of proportionality for standard deviation σε of measurement noise ε, 𝜎𝜀 =10 

𝜆𝑧𝑗 . 11 

 12 

As shown in Figure 3, coefficients 𝜆 decrease with increasing 𝐿∗, i.e. the relative error  13 

of measurements decreases as 𝐿∗ increases. The model estimates obtained  and measurement noise 14 

statistics 𝑞, 𝜎𝑤, and 𝜎𝜀 were used to develop an adaptive Kalman filter for the PSD observations 15 

obtained from measured electron fluxes by REPT and MagEIS instruments. 16 

 17 

3. The 3-D filtration and smoothing of Van Allen Probes data 18 

3.1. Joint assimilation of final level 3 data obtained from REPT and MagEIS instruments 19 

of Van Allen Probes A and B satellites 20 

А  global reanalysis of the radial profile of electron PSD is performed by joint assimilation of 21 

data from REPT and MagEIS instruments on the Van Allen Probes A and B satellites. The 22 

construction of a state space model and reconstruction of the transition matrix presented in section 23 

1 allowed us to perform an independent assimilation of PSD observations by applying the 1-24 

dimensional Kalman filter at each 𝐿∗ by fixing successively every value of pitch-angles 𝛼 and 25 

energies 𝐸 on the (𝐿∗, 𝜇, 𝛼) grid. The Kalman filter does not completely solve the data assimilation 26 

problem for the past measurements in an optimal way as it uses observation information available 27 

at the current time and does not adjust a data assimilation algorithm by the PSD observations 28 

obtained after the current time. An additional backward smoothing procedure applied to the 29 

forward Kalman filter estimates uses all available PSD observations, including observations after 30 

the current assimilation step, and provides an improved reconstruction of PSD compared to the 31 

Kalman filter [Sage and White, 1977].  32 
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The results of joint assimilation of MagEIS and REPT data for the full (𝐿∗, 𝜇, 𝛼) grid for all 1 

values of 𝐿∗, 𝜇, and 𝛼 over the period October 2012 – April 2013 can be found at 2 

ftp://rbm.epss.ucla.edu/ftpdisk1/3D_Data_Assimilation/v2.0/.  3 

Figure 4a shows the PSD observations obtained from measured electron fluxes by REPT 4 

instrument of both satellites Van Allen Probes A and B at fixed values of 𝜇 = 2129 MeV/G and 5 

pitch angle 𝛼 = 43𝑜 over the period of two days in October 16-17, 2012. Figure 4b shows the PSD 6 

observations obtained from measured electron fluxes by MagEIS instrument of A and B satellites 7 

at fixed values of 𝜇 = 159 MeV/G and pitch angle 𝛼 = 43𝑜 over the same period. Figures 4c and 8 

4d provide the estimation results of PSD dynamics in the entire magnetosphere within   𝐿∗ from 1 9 

to 6 by a Kalman filter and smoothing using data obtained by REPT (a) and MagEIS (a) 10 

instruments. 11 

 12 
Figure 4. The reconstructed PSD estimates in the entire magnetosphere within 𝐿∗ from 1 to 6 by 13 

a Kalman filter and smoothing using measurements of Van Allen Probes А and B satellites. (a) 14 

REPT ten min PSD observations at fixed 𝜇 = 2129 MeV/G and pitch angle 𝛼 = 43𝑜.(b) 15 

MagEIS ten min PSD observations at fixed 𝜇 = 159 MeV/G and pitch angle 𝛼 = 43𝑜 (c) The 16 

reconstructed PSD using both REPT-A and REPT-B observations (d) The reconstructed PSD 17 

using both MagEIS -A and MagEIS -B observations. 𝑋 axis shows the time period of 18 

assimilation of two days in October 16-17, 2012. 𝑌 axis gives  𝐿∗ from 1 to 6, and 𝑍 axis 19 

provides the PSD observations and the reconstructed PSD estimates. 20 

 21 

The proposed assimilation technique of satellite measurements provides the filtration  22 

of random fluctuations and fills the gaps at intervals between sparse satellite observations.  23 

 24 

3.2. Analysis of assimilation accuracy 25 

Figure 5a shows the filtered (green) and smoothed (red) PSD estimates at 𝐿∗ = 5.4 at fixed 26 

values of 𝜇 = 2129 MeV/G and pitch angle 𝛼 = 43𝑜 over the period of seven days in October 10-27 

16, 2012. Blue dots show available PSD observations obtained from measured electron fluxes by 28 

ftp://rbm.epss.ucla.edu/ftpdisk1/3D_Data_Assimilation/v2.0/
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the Van Allen REPT instrument on satellite A that were used in the assimilation algorithms. Figure 1 

5b shows RMS errors of filtration (green) and smoothing (red) determined as root squares of 2 

diagonal elements of the filtration and smoothing error covariance matrices provided by Kalman 3 

filter and smoothing algorithms at 𝐿∗ = 5.4. 4 

 5 
Figure 5. Results of PSD reconstruction at 𝐿∗ = 5.4 at fixed values of 𝜇 = 2129 MeV/G and pitch 6 

angle 𝛼 = 43𝑜 over the period of seven days in October 10-16, 2012. (a) Blue dots - PSD 7 

observations obtained from measured electron fluxes by REPT instrument of Van Allen Probes A 8 

satellite that were used in the assimilation algorithms. Green line – filtered PSD estimates. Red 9 

line – smoothed PSD estimates. (b) RMS errors of filtration (green) and smoothing (red) 10 

determined as root squares of diagonal elements of the filtration and smoothing error covariance 11 

matrices provided by Kalman filter and smoothing algorithms. 12 

 13 

As shown in Figure 5b, the dynamics of the filtration and smoothing errors is characterized by 14 

cyclic behavior. The RMS errors become minimal during periods in which the PSD observations 15 

are available. Within data gaps the RMS errors increase by an amount that depends on the length 16 

of the gap. However, the smoothed PSD estimates demonstrate the increased accuracy of global 17 

reconstruction compared to the Kalman filter estimates. This is of particular importance to produce 18 

an objective reanalysis of the sparse satellite observations. 19 

To further analyze the effectiveness of smoothing for the global reconstruction of the dynamics 20 

of radiation belts compared to Kalman filter, additional tests are performed. Figure 6 shows the 21 

filtered and smoothed PSD estimates at  𝐿∗ = 5.4 (a) and 𝐿∗ = 5.3 (b) at fixed values of 𝜇 = 2129 22 

MeV/G and pitch angle 𝛼 = 43𝑜 over the period of seven days in October 10-16, 2012. The red 23 

and blue dots show the available PSD observations obtained from measured electron fluxes by 24 
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REPT instrument of Van Allen Probes A satellite. To test the robustness of our method we exclude 1 

12 points from every 18 points available. Assimilation with remaining points produces similar 2 

results.The red dots were removed from the reanalysis and are not used for the filtration and 3 

smoothing.. Filtration (cyan) and smoothing (green) of data was performed only by using remained 4 

PSD observations (blue dots).  5 

 6 
Figure 6. The filtered and smoothed PSD estimates at  𝐿∗ = 5.4 (a) and 𝐿∗ = 5.3 (b) at fixed values 7 

of 𝜇 = 2129 MeV/G and pitch angle 𝛼 = 43𝑜 over the period of seven days in October 10-16, 8 

2012. Red dots - removed PSD observations obtained from measured electron fluxes by REPT 9 

instrument of Van Allen Probes A satellite not participating in the filtration and smoothing. From 10 

every 18 points, 12 points were excluded from the data assimilation (67% of gaps). Blue dots - 11 

remained PSD observations used for the filtration and smoothing. Cyan line - filtered PSD 12 

estimates using remained observations (blue dots). Green line - smoothed PSD estimated using 13 

remained observations (blue dots). 14 

 15 

The sum of squared deviation between filtered PSD and observations that did not participate in the 16 

data assimilation is 2.4e-12 at 𝐿∗ = 5.4 and 9.4e-12 at 𝐿∗ = 5.3 during the analyzed period of seven 17 

days. At the same time the sum of the squared deviation between the smoothed PSD and 18 

observations that were not used  in the data assimilation is smaller, 1.8e-12 at 𝐿∗ = 5.4 and 5.0e-19 

12 at 𝐿∗ = 5.3. This is an additional argument in favor of more accurate smoothed PSD estimates 20 

compared to Kalman filter results.  21 

 22 

4. Development of technique to estimate the radial and energy diffusion rate from  23 

the assimilation of satellite observations 24 
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The development of adaptive Kalman filter that combines the Van Allen Probes data and 3-D 1 

VERB code, its accurate customizations for the reconstruction of the phase space density (PSD) 2 

evolution, and the developed identification techniques of model and measurement errors allowed 3 

us to reveal physics governing the PSD dynamics and obtain quantitative and qualitative estimates 4 

of radial and energy diffusion rates.  5 

 6 

4.1. The dynamics of phase space density maximum  7 

To estimate the rate of radial and energy diffusion, as well as the direction of their propagation 8 

using data assimilation results we analyze the dynamics of the time  9 

of maximum  PSD at neighboring L∗. 10 

Figure 7 shows the reconstructed PSD by a forward Kalman filter and backward smoothing 11 

using REPT Van Allen Probes A and B measurements at 𝐿∗ = 3.4 (cyan), 𝐿∗ = 3.3 (black), 𝐿∗ =12 

3.2 (red) at fixed values of 𝜇 = 2129 MeV/G and pitch angle 𝛼 = 43𝑜 over the period  13 

of seven months in October 2012 – April 2013.   14 

 15 
Figure 7. The reconstructed PSD by a Kalman filter and smoothing using REPT Van Allen Probes 16 

A and B observations at 𝐿∗ = 3.4 (cyan), 𝐿∗ = 3.3 (black), 𝐿∗ = 3.2 (red) at fixed values of 𝜇 =17 

2129 MeV/G and pitch angle 𝛼 = 43𝑜 over the period of seven months  18 

in October 2012 – April 2013.   19 

 20 

As shown in Figure 7, the maximum  PSD occurs later for lower 𝐿∗. However these curves are still 21 

characterized by high level of variability. To accurately select the maximum  PSD we adjust the 22 

obtained PSD estimates by applying an additional forward and backward exponential smoothing 23 

[Brown, 1963] for all 𝐿∗. 24 
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Forward exponential smoothing of PSD estimates  1 

Xj+1
f  = Xj

f + β(X̂j+1 − Xj
f)          (16) 2 

where 𝑋̂𝑗+1 is the reconstructed PSD estimates and  𝛽 = 0.001 is a smoothing coefficient. To 3 

avoid shifting of the estimates 𝑋𝑗+1
𝑓

  we perform their time reversed smoothing 4 

Backward exponential smoothing of  Xj+1
f   estimates  5 

𝑋𝑘
𝑏 = 𝑋𝑘+1

𝑏 + 𝛽(𝑋𝑘+1
𝑓

− 𝑋𝑘+1
𝑏 )         (17) 6 

Figure 8 shows the additionally smoothed estimates of PSD  𝑋𝑘
𝑏 at 𝐿∗ = 3.4 (cyan), 𝐿∗ = 3.3 7 

(black), 𝐿∗ = 3.2 (red) at fixed values of 𝜇 = 2129 MeV/G and pitch angle 𝛼 = 43𝑜 over the 8 

period of seven months between October 2012 – April 2013.   9 

 10 
Figure 8. The additionally smoothed estimates of reconstructed PSD by backward and forward 11 

exponential smoothing at 𝐿∗ = 3.4 (cyan), 𝐿∗ = 3.3 (black), 𝐿∗ = 3.2 (red) at fixed values of 𝜇 =12 

2129 MeV/G and pitch angle 𝛼 = 43𝑜 over the period of seven months between October 2012 – 13 

April 2013.   14 

 15 

Figure 9 shows the additionally smoothed estimates of reconstructed PSD by backward and 16 

forward exponential smoothing at fixed 𝐿∗ from 3 to 5.4 at fixed values of 𝜇 = 2129 MeV/G and 17 

pitch angle 𝛼 = 43𝑜 over the period of seven months in October 2012 – April 2013.   18 

The variation in time at which the maximum in PSD occurred demonstrates the dynamics  19 

of radial diffusion propagation. Analysis of the maximum PSDs as a function of L* and time 20 

enables the calculation of the rate of radial diffusion.  As shown in Figure 9c, the earliest maximum 21 

PSD was observed at 𝐿∗ = 4.2.   That indicates that acceleration started locally at this location and 22 
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then maximum PSD is reached at later times at higher and lower L-shells (Figure 9d) and  (Figure 1 

9e). 2 

To estimate the main characteristics of radial diffusion we analyze the dependence of time 3 

when the maximum PSD is registered for a particular 𝐿∗. Figure 10 shows the dependence of the 4 

registration time of the maximum PSD on 𝐿∗ from 3.7 to 5.4 at fixed value of pitch angle 𝛼 = 43𝑜 5 

and various values of 𝜇.  6 

 7 
 8 

Figure 9. The additionally smoothed estimates of reconstructed PSD by backward and forward 9 

exponential at fixed 𝐿∗ from 3 to 5.4 at fixed values of 𝜇 = 2129 MeV/G and pitch angle 𝛼 =10 

43𝑜 over the period of two months between October 2012 – December 2012.   11 

 12 

As shown in Figure 10, the earliest maximum  PSD is registered at 𝐿∗ = 4.2. The maximum 13 

PSD is reached faster at 𝐿∗ > 4.2 compared to lower 𝐿∗ <4.2 for all adiabatic invariants 𝜇 14 

demonstrating the direction of radial diffusion. Quantitative estimates of the radial diffusion rate 15 

are determined by the shift rate in the maximum PSD relative to 𝐿∗. As shown in Figure 10, the 16 

maximum  PSD occurs earlier for smaller values of 𝜇 confirming the energy diffusion source. For 17 

example, at  𝐿∗ = 4.2 where the earliest maximum  PSD was , the electron energy 3.5 MeV 18 

(𝜇 = 1744 MeV/G) increased to values of 5.5 MeV  (𝜇 = 3874 MeV/G). The time interval 19 
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between registration of these maximums for  𝜇 = 1744 MeV/G (red) and  𝜇 = 3874 MeV/G 1 

(cyan) is 6 hours and 10 minutes that allows us to estimate the diffusion rate 0.32 MeV per hour.  2 

 3 

 4 
Figure 10. The dependence of registration time of maximum  PSD on 𝐿∗ from 3.7 to 5.4 at 5 

fixed value of pitch angle 𝛼 = 43𝑜 and various values of  𝜇. 𝑋 axis shows 𝐿∗ from 3.7 to 5.4 and  6 

𝑌 axis gives the registration time of maximum  PSD.  7 

 8 

Thus, the assimilation of satellite observations allowed us to infer radial and energy diffusion 9 

rates from observations. The proposed approach can also be used to test different existing models 10 

for radial diffusion coefficients [e.g., Brautigam and Albert, 2000].  11 

 12 

4.2. Sensitivity analysis of diffusion rate estimates 13 

In this section, we discuss the influence of a chosen physical model on the estimates of radial 14 

and energy diffusion rate obtained from the data assimilation of satellite observations. We perform 15 

sensitivity tests and demonstrate the power of data assimilation confirming that the estimates of 16 

radial and energy diffusion rate do not almost depend on the chosen model and are obtained from 17 

experimental data. We conduct the sensitivity analysis by varying  the power of 𝐿, 𝛼 in the radial 18 

diffusion coefficients 𝐷𝐿,𝐿 = 100.506 𝐾𝑝 − 9.325𝐿𝛼   [Brautigam and Albert, 2000]. The power of 19 

𝐿 in the radial diffusion equation was varied from 6 to 10 and 1-D data assimilation was performed. 20 

The results for 𝛼 = 10 and 𝛼 = 6 are shown in Figures 11 and 12.   21 

Figure 11 shows 1-D radial diffusion simulations at fixed 𝜇 =  2129 MeV/G and diffusion 22 

coefficient 𝐾 =  0.11𝐺0.5𝑅𝐸 with 𝐿10 (a) from Brautigam and Albert [2000] and 𝐿6 (b). Kp-index 23 

over the period of seven months between October 2012-April 2013 that was used in the simulation 24 

is shown in Figure 11c. 25 
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 1 

Figure 11. 1-D radial diffusion simulations at fixed μ =  2129 MeV/G and K =  0.11G0.5RE. (a) 2 

Simulation utilizing the radial diffusion rates of Brautigam and Albert [2000] (L10).              (b) 3 

Simulation using  L6 in place of L10. (c) Kp index. 4 

 5 

The simulation results with different powers of 𝐿 are vastly different in Figure 11a and 11b. 6 

To determine the error in this case we applied the developed techniques for noise statistics 7 

identification adjusting the physical model and perform the assimilation of Van Allen Probes data 8 

using an adaptive forward Kalman filter followed by a backward smoothing algorithm. The results 9 

of data assimilation for the same period and for each model are shown in Figure 12a and 12b.  10 

 11 

Figure 12. The results of data assimilation of Van Allen Probes measurements fixed μ =  2129 12 

MeV/G and K =  0.11G0.5RE.  (a) Reanalysis with 1-D diffusion based on the radial diffusion 13 

rates of Brautigam and Albert [2000] (L10.), (b) Reanalysis with 1-D diffusion using 𝐿6, in place 14 

of 𝐿10. 15 

 16 



1
7 

Project: PROGRESS Doc No: PROGRESS.D6.2 
Deliverable: D6.2 Page: 17 of 20 

 
 

 

As shown in Figure 12, the difference between the two panels (a) and (b) is negligible in this 1 

case. This is a demonstration of the fact that if the error statistics are correctly defined, then the 2 

estimation results are largely insensitive to the use of an incorrect model. In this case, the data are 3 

weighted higher by the Kalman filter gain.  4 

Thus, the assimilation results are largely unchanged by the use of different radial diffusion 5 

coefficients in cases when  reliable noise statistic identification and accurate customization  6 

of the assimilation algorithm lead to a good estimate of the true PSD in the system. This is  7 

a strong argument that estimates of the diffusion rates may be inferred from the data assimilation 8 

and do not depend strongly on the assumptions of the model as there are sufficient data to correct 9 

them. 10 

The example of a sensitivity test to 𝐷𝐿𝐿 is important for the proposed method. What is shown 11 

is that the results of data assimilation do not depend on the assumed radial diffusion model, and 12 

thus our inferred radiation diffusion rates will be driven by data where the model is incorrect, and 13 

not by the assumptions of the model. 14 

 15 

4.3. Estimation of radial, energy and pitch angle diffusion rate for various values  16 

of adiabatic invariants 𝝁 and 𝜶.  17 

The development of techniques to extract the radial, energy and pitch angle diffusion rate from 18 

experimental data is important to test different existing models of radial diffusion coefficients [e.g., 19 

Brautigam and Albert, 2000] and incorporate the proper diffusion coefficients into numerical 20 

simulations. In this section we focus on the further development of estimation of diffusion rates 21 

from assimilation results of satellite observations.  22 

The panels in Figure 13 show the depepdence of the maximum PSD for different values of μ 23 

in the range 1148-5878 MeV/G as a function of time and L*. The individual panels show the results 24 

for different pitch angles in the range 43° to 57°. The estimates of registration time of maximum  25 

PSD were made from the assimilation of REPT data from the Van Allen Probes A and B satellites. 26 

As shown in Figure 13, the maximum  PSD is first observed  in the range 4.1 <  𝐿∗ < 4.3. and 27 

has greater rate of diffusion at higher 𝐿∗ compared to lower 𝐿∗ for all adiabatic invariants 𝜇 and 28 

pitch angles from 33𝑜 to 57𝑜 degrees. This observation is consistent with local acceleration by 29 

radial diffusion and simultaneous pitch angle diffusion from high pitch angles toward loss cone. 30 

For every fixed pitch angle the smaller 𝜇, the earlier maximum  PSD is observed, evidence of 31 

energy diffusion source. These dependencies allow us to quantitatively estimate the radial 32 

diffusion rate.  33 

Figure 14 shows the same as Figure 13 except the estimates of registration time of maximum 34 

PSD were made from the assimilation of MagEIS data. The dynamics of maximum PSD is shown 35 

for various values of pitch angles from  43𝑜 to 57𝑜 degrees. As shown in figure, the radial diffusion 36 

propagation is limited at high 𝐿∗, however injections from L∗ = 3.8 to 𝐿∗ = 4.5 are clearly seen.  37 

Figure 15 shows the dependence of time when maximum  PSD obtained from REPT 38 

instruments  of Van Allen Probes A and B is registered on smaller 𝐿∗ from 3.4 to 3.7. Colors show 39 

the dynamics of maximum PSD for different values of adiabatic invariant μ from 1148 MeV/G to 40 

5878 MeV/G. The dynamics of maximum PSD is shown for various values of pitch angles from 41 

33𝑜 to 57𝑜 degrees. As shown in figure, the radial diffusion rate decreases while propagating from 42 

𝐿∗ = 3.7  to 𝐿∗ = 3.4. 43 
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 1 

 2 
Figure 13. Dependence of time when maximum  PSD is registered on 𝐿∗ from 3.7 to 5.4. Colors 3 

show the dynamics of maximum  PSD for different values of adiabatic invariant 𝜇. The dynamics 4 

of maximum  PSD is shown for fixed pitch angles: (a) 33𝑜, (b) 38𝑜, (c) 43𝑜, (d) 48𝑜,  5 

(e) 52𝑜, (f) 57𝑜. 𝑋 axis shows 𝐿∗ and 𝑌 axis gives time when the PSD maximum  is registered. 6 

REPT data of Van Allen Probes A and B satellites are used.  7 

 8 

 9 
Figure 14. Dependence of time when maximum  PSD is registered on L∗ from 3.7 to 5.4. Colors 10 

show the dynamics of maximum  PSD for different values of adiabatic invariant μ. The dynamics 11 

of maximum  PSD is shown for fixed pitch angles: (a) 43𝑜, (b) 52𝑜, (c) 57𝑜. X axis shows L∗ and 12 

Y axis gives time when maximum  PSD is registered. MagEIS data of Van Allen Probes A and B 13 

satellites are used. 14 

 15 

Figure 16 shows the dependence of time when the maximum  PSD is registered on energy at 16 

fixed 𝐿∗ = 4.3 RE (a) and 𝐿∗ = 4.6 RE (b) that allows us to estimate the energy diffusion rate from 17 

experimental data. The colors show the dynamics of maximum PSD for different pitch angles from 18 

33𝑜 to 57𝑜 degrees. As shown in figure, maximum energization occurs at high pitch angles. This 19 

is consistent with energy diffusion by chorus waves. The maximum  PSD is seen earlier at higher 20 

pitch angles and energy diffusion is faster at high pitch angles. The PSD maximum  is also 21 

observed earlier at lower 𝐿∗ = 4.3 compared to higher   𝐿∗ = 4.4. 22 
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 1 

 2 
Figure 15. Dependence of time when maximum  PSD is registered on 𝐿∗ from 3.4 to 3.7. Colors 3 

show the dynamics of maximum  PSD for different values of adiabatic invariant 𝜇.  4 

The dynamics of maximum  PSD is shown for fixed pitch angles: (a) 33𝑜, (b) 38𝑜, (c) 43𝑜, (d) 5 

48𝑜, (e) 52𝑜, (f) 57𝑜. 𝑋 axis shows 𝐿∗ and 𝑌 axis gives time when the PSD maximum  is observed. 6 

REPT data of Van Allen Probes A and B satellites are used.  7 

 8 

 9 
 10 

Figure 16. Dependence of time when maximum  PSD is registered on energy at fixed  11 

𝐿∗ = 4.3 MeV (a) and 𝐿∗ = 4.6 MeV (b). Colors show the dynamics of maximum  PSD for 12 

different pitch angles from 33o to 57o. Colors show the dynamics of maximum  PSD for different 13 

pitch angles: cyan -  33𝑜 , yellow -  38𝑜, blue -  43𝑜, black -  48𝑜, red - 52𝑜, and green - 57𝑜. 𝑋 14 

axis shows energy in MeV and 𝑌 axis gives time of maximum  PSD. 15 

 16 

Figure 17 shows the dependence of time when maximum  PSD is registered on pitch angle 17 

from 33𝑜 to 57𝑜 degrees at fixed energies 𝐸 = 3.4 MeV (a) and 𝐸 = 3.8 MeV (b). Colors show  18 

the dynamics of maximum  PSD for different 𝐿∗ = 4.3 (blue) and  𝐿∗ = 4.6 (red).  19 
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 1 
Figure 17. The dependence of time when maximum  PSD is registered on pitch angle from 33𝑜 2 

to 57𝑜 degrees at fixed energies (a) 3.4 MeV; (b) 3.8 MeV. Colors show the dynamics of maximum  3 

PSD for different 𝐿∗ = 4.3 (blue) and  𝐿∗ = 4.6 (red). 𝑋 axis shows the pitch angles in degrees and 4 

𝑌 axis gives time of maximum  PSD. 5 

 6 

As shown in Figure 17, the maximum  PSD is registered earlier at smaller energy 𝐸 = 3.4 7 

MeV compared to higher energy 𝐸 = 3.8 MeV. The pitch angle diffusion process propagates from 8 

larger to smaller pitch angles and the diffusion rate slows down with the decrease of pitch angle. 9 

This allows us to retrieve estimates of the pitch angle diffusion rate from satellite observations.  10 

This approach to extract the rates of radial, energy, and pitch angle diffusion can be developed by 11 

assimilating other events. Comparison of obtained estimates with experimental data will allow to 12 

incorporate the proper diffusion coefficients and to improve current physical models  13 

of radiation belt dynamics. 14 

 15 

References 16 

Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt  17 

electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105, 291–310. 18 

Brown R.G. Smoothing forecasting and prediction of discrete time series (1963), Prentice-HaU, 19 

N.Y., PP. 468. 20 

Brown R.G. Smoothing forecasting and prediction of discrete time series // Prentice-HaU, N.Y. 21 

1963. PP. 468. 22 

Kalman, R. E. (1960), A new approach to linear filtering and prediction problems, Trans. 23 

ASME J. Basic Eng., 82, 35–45. 24 

Kalman, R. E., and R. S. Bucy (1961), New results in linear filtering and prediction theory, 25 

Trans. ASME, Ser. D, J. Basic Eng., 83, 95–107. 26 

Sage, A. P., and C. C. White (1977), Optimum Systems Control, 413 pp., Prentice-Hall, Upper 27 

Saddle River, N. J. 28 


