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1 Introduction

Work Package 6 is devoted to pioneering the development of a novel forecasting technique.

This is based on the fusion of system identification models of the electron fluxes with a

physics based numerical model. The physics based models have an advantage of being

able to model the whole region of the radiation belts. Since we do not have a complete

understanding of the physics of the radiation belts, models based on first principals strug-

gle to capture the variable dynamics of the system. While the system identification based

radiation belt models provide an accurate forecast of the electron fluxes at GEO but, due

to the lack of continuous data outside GEO, cannot be extended to the whole radiation

belts.

The main goal of this deliverable is to develop models that extend the energy ranges

of the current She�eld model, SNB3GEO and also increase the temporal resolution of the

forecasts. These models will then be utilised with physics based VERB models to develop

a hybrid model that will cover the whole radiation belts and have a high forecast accuracy.

Therefore, the hybrid model will have the advantages of both system identification models

and physics based models.

2 Conclusion

The aim of this study was to create forecast models for the electron flux energy ranges

observed by the third generation GOES satellites. Also these models should have an
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increased temporal resolution over the > 800 keV and > 2 MeV GEO electron fluxes

models that were previously developed Boynton et al. [2015] and are operated at She�eld

(www.ssg.group.shef.ac.uk/USSW/UOSSW.html). As such, this study has deduced five

new 1 hour resolution models for the low energy electron measured by GOES, ranging in

energy from 30 keV to 600 keV and extended the existing > 800 keV and > 2 MeV GEO

electron fluxes models to forecast at a 1-hour resolution.
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Abstract. Forecast models are derived for the energetic electrons for all3

energy ranges sampled by the third generation Geostationary Operational4

Environmental Satellites (GOES). These models are based on Multi-Input5

Single-Output (MISO) Nonlinear AutoRegressive Moving Average with eX-6

ogenous inputs (NARMAX) methodologies. The models use solar wind and7

geomagnetic indices input data to produce a forecast of the energetic elec-8

trons at Geostationary Earth Orbit (GEO). These models are shown to pro-9

vide accurate forecasts that are capable of warning satellite operators of when10

the electrons at GEO could cause problems for their spacecraft.11
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1. Introduction

The radiation belts consist of energetic particles trapped by the terrestrial magnetic12

field and were discovered by Van Allen [1959] from the first in situ space radiation mea-13

surements. The outer radiation belt is made up of trapped electrons ranging in energy14

from 10’s of keV to several MeV. Blake et al. [1992] and Reeves [1998] showed that the15

number of these electrons can vary by several orders of magnitude in a few hours. The16

high fluence of these energetic electrons can cause a number of problems on spacecraft17

depending on the electron energy. For example, low energy electrons (10 keV to a few18

hundred keV) can cause surface charging that interferes with the satellite electronic sys-19

tems, while higher energies (about 1 MeV and above) cause deep dielectric charging that20

may permanently damage the dielectric material onboard the satellite.21

There are still many unanswered questions about the mechanisms involved within the22

radiation belts, such as the acceleration mechanisms and loss processes of the electrons.23

Since we do not have a complete understanding of the physics, radiation belt models based24

on first principals struggle to capture the variable dynamics of the system. As such, these25

models often have large errors between the forecast and the observed electron population.26

The system identification approach has also been applied to modelling the radiation27

belts. In this approach, models are automatically deduced from input-output data by the28

system identification algorithms. These algorithms include linear prediction filters Baker29

et al. [1990], neural networks [Koons and Gorney , 1991; Freeman et al., 1998; Ling et al.,30

2010], and Nonlinear AutoRegressive Moving Average with eXogenous inputs (NARMAX)31

[Wei et al., 2011; Boynton et al., 2013a, 2015]. NARMAX and neural networks can32

D R A F T June 26, 2015, 4:45pm D R A F T



X - 4 BOYNTON ET AL.: GOES ELECTRON FLUX MODELS

both provide accurate and reliable models for nonlinear systems such as the radiation33

belts, however, NARMAX has the advantage of interpretability over neural networks.34

Neural networks result in the relationship between input and output measurements being35

described through a maze of multilayered neurones, in which each connection has an36

associated weight factor and each neurone has an activation function. This makes neural37

networks extremely di�cult to interpret, i.e., to find out how the input variables couple38

together to produce changes in the output. In contrast, NARMAX models can result in39

a simple polynomial, from which an understanding how the inputs change the output is40

intuitive. Therefore, this study uses the NARMAX methodologies to model the electron41

fluxes observed by the Geostationary Operational Environmental Satellites (GOES).42

The main aim of this study is to create reliable forecast models for the electron flux43

energy ranges observed by the third generation GOES satellites. The second aim is44

to increase temporal resolution of the forecast to that which currently operates on the45

University of She�eld Space Weather Website and was developed by Boynton et al. [2015].46

In Section 2, we discuss the methodology used to deduce the forecast models. This includes47

a brief description of the NARMAX algorithm. Section 3 deals with the extension of the48

current 24-hour resolution > 800 keV and > 2 MeV GEO electron flux models, developed49

by Boynton et al. [2015], to 1-hour resolution and their performance is calculated. In50

Section 4, the methodology and data used to derive the low energy models is detailed51

and the results of the models performances are shown. The limitations of the models and52

their performance are discussed in Section 5 and the study is concluded in Section 6.53

2. NARMAX Methodology
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As stated in Section 1, NARMAX models provide reliable forecasts and are also easy54

to interpret. As such, the methodology has been applied to a wide range of scientific55

fields, from analysing the adaptive changes in the photoreceptors of Drosophila Flies56

[Friederich et al., 2009] to modelling the tide at the Venice Lagoon [Wei and Billings ,57

2006]. In the field of space physics, the methodology was first used to model the Dst58

Index using the half wave rectifier as the input [Balikhin et al., 2001; Boaghe et al., 2001].59

More recently, due to absence of knowledge about the inputs to the Dst index system,60

Boynton et al. [2011b] used the NARMAX model structure detection methodology to61

identify the main control parameter, or solar wind coupling function, for geomagnetic62

storms quantified using the Dst index. Boynton et al. [2011a] used this coupling function63

to deduce a reliable model for the Dst Index. Boynton et al. [2013b] and Balikhin et al.64

[2011] employed a similar approach to identify the solar wind control parameters for65

electron fluxes at GEO. The interpretability of these results allowed Balikhin et al. [2012]66

to make a direct comparrison with the energy di↵usion equation, where they found that67

acceleration due to local di↵usion is not dominant at GEO.68

NARMAX models were first proposed by Leontaritis and Billings [1985a, b] who demon-69

strated the models have the potential to represent a wide class of nonlinear systems. A70

Multi-Input Single-Output (MISO) NARMAX model, which was used in this study to71

model the electron fluxes at GEO, is expressed by72

y(t) = F [y(t� 1), ..., y(t� ny),

u1(t� 1), ..., u1(t� nu1), ...,

um(t� 1), ..., um(t� num), ...,

e(t� 1), ..., e(t� ne)] + e(t) (1)
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where y, u, and e represent the output, input and error terms respectively, F [·] repre-73

sents some nonlinear function (a polynomial in the case of this study), m is the number74

of system inputs and ny, nu1 ,..., num , ne are the maximum time lags for the output, each75

of the m inputs, and the error respectively.76

Billings et al. [1988] developed the first Forward Regression Orthogonal Least Squares77

(FROLS) algorithm that automatically fits a NARMAX model using input-output train-78

ing data sets. Simply put, the overall algorithm put forward by Billings et al. [1988]79

involved three stages. The first stage is model structure detection, which identifies the80

variables or combination of variables that control the evolution of the system. In Equation81

1, the expansion of F [·] in terms of a high degree polynomial, results in a huge number of82

monomials, especially if there are many possible inputs. The vast majority of the possible83

monomials will have little influence on the system, i.e., the coe�cients of the monomial84

will be zero. Therefore, only a small number of monomials are required to represent the85

dynamics of the system. The FROLS procedure identifies the most significant monomi-86

als by use of the Error Reduction Ratio (ERR). Once the model structure is detected,87

the second stage is to estimate the coe�cient for each of the monomials detected in the88

model. These first two stages are referred to as training the model. The final stage is to89

validate the model. Since its inception, there have many variants on the FROLS algo-90

rithm [Billings et al., 1989; Mao and Billings , 1997; Wei and Billings , 2008]. This study91

employes the Iterative Orthogonal Forward Regression (IOFR) algorithm, developed by92

Guo et al. [2014], which is more likely to detect the optimal model when the data is93

oversampled.94
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3. Increasing the time resolution of the existing > 800 keV and > 2 MeV

GEO electron flux models

Models for forecasting the fluxes of > 800 keV and > 2 MeV electrons at GEO were95

developed by Boynton et al. [2015]. These models were deduced using the NARMAX96

methodology and provide a 1-day resolution forecast for one day ahead. Both of these97

models were shown to have a high prediction e�ciency for estimating the next days98

electron flux value [Boynton et al., 2015]. The forecast results can be found online at99

www.ssg.group.shef.ac.uk/USSW/UOSSW.html.100

One of the aims of this study is to increase the temporal resolution of these forecasts.101

Therefore, the temporal resolution of the > 800 keV and > 2 MeV GEO electron flux102

models were extended to give a forecast of the electron fluxes every hour for the next 24103

hours in contrast only one daily forecast per day.104

3.1. Data and methodology

The > 800 keV and > 2 MeV electron flux models rely on solar wind inputs to fore-105

cast the electron flux. The solar wind inputs are the daily average velocity and density;106

and the amount of time the IMF is southward in a 24 hour period. The 1-minute solar107

wind velocity, density and IMF z-component data were obtained from the OMNI website108

(http://omniweb.gsfc.nasa.gov/ow min.html) from 1 January 2011 to 28 February 2015.109

At every hour, the past 24 hour average of the solar wind velocity and density was cal-110

culated. For example, the point at 10:00:00 UTC on 5 January 2015 is average of the111

1440 1-minute points between 10:01:00 UTC on 4 January 2015 and 10:00:00 UTC on 5112

January 2015. In addition, the number of minutes that the IMF was southward during113

the past 24 hours was determined for the final input.114
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The electron flux data used to analyse the performance of the extended tempo-115

ral resolution > 800 keV and > 2 MeV GEO electron flux models were from116

the third generation GOES satellite, GOES 13. The electron fluxes onboard117

the GOES 13 satellite are measured by the Energetic Proton Electron and Al-118

pha Detector (EPEAD) [Hanser , 2011] and the MAGnetospheric Electron Detector119

(MAGED) [Hanser , 2011]. The data for these instruments can be accessed from120

http://www.ngdc.noaa.gov/stp/satellite/goes/dataaccess.html.121

The EPEAD measures the relativistic integral electron fluxes and has two detectors122

pointing in opposite directions, tangential to the spacecrafts orbit and are named the123

East and West detectors. These data were used to assess the 1-hour temporal resolution124

of the SNB3GEO electron flux models. The data period used for this part of the study125

was from 1 January 2011 to 28 February 2015. The study employed the > 800 keV and126

> 2 MeV energy channels from both the east and west detector onboard the GOES 13127

satellite. The 5-minute proton corrected electron flux values were averaged between the128

east and west detector to get an omnidirectional flux. This was then temporally averaged129

resulting in a data set with 1-hour resolution, such that each 1-hour point was determined130

by averaging the 5-minute omnidirectional data over the past 24 hours, e.g the point at131

10:00:00 UTC on 5 January 2015 is average of the 288 5-minute points between 10:05:00132

UTC on 4 January 2015 and 10:00:00 UTC on 5 January 2015. This data would then be133

compared to the model forecast.134

3.2. Model Performance

The > 800 keV and > 2 MeV GEO electron flux models were run using the 1-hour135

resolution input data and the results were compared to the EPEAD 1-hour electron flux136
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data, for the period from from 1 January 2011 to 28 February 2015. The performance of137

the models during the period could then be analysed.138

The performance of the models was assessed statistically by the the Correlation Coef-

ficient (CC), Eq. (2), and the Prediction E�ciency (PE), Eq. (3), which are commonly

used to assess models [Temerin and Li , 2006; Li , 2004; Boynton et al., 2011a; Wei et al.,

2004; Boynton et al., 2015; Rastatter et al., 2013].
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Here, EPE is the PE, ⇢ is the CC, y(t) is the output at time t, ŷ is the estimated output139

from the model, N is the length of the data and the bar signifies the average.140

3.2.1. > 800 keV model141

Figure 1 shows the past 24 hour average > 800 keV electron flux measured by GOES in142

blue and the model 24 hour ahead forecast in orange for the period from 1 January 2011143

to 28 February 2015. During this period, the model the PE was 72.1% and the CC was144

85.1%.145

3.2.2. > 2 MeV model146

Figure 2 shows the past 24 hour average > 2 MeV electron flux measured by GOES in147

blue and the model 24 hour ahead forecast in orange for the period from 1 January 2011148

to 28 February 2015. The PE for the > 2 MeV model was 82.3% while the CC was 90.9%.149
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Figure 2 reflects the statistics, since it can clearly be seen that the model closely follows150

the blue observed GOES electron flux, which is seen more when the electron flux is low.151

4. Modelling the low energy electron fluxes measured by third generation

GOES

Models to forecast the low energy electrons measured by GOES satellites were deduced152

using the NARMAX IOFR algorithm. This method requires input-output data for train-153

ing the models.154

4.1. Data and Methodology

The electron flux data for the training and validation of these models comes again from155

the GOES 13 satellite. The MAGED has 9 telescopes pointing in di↵erent directions and156

measures the lower energy di↵erential electron fluxes in 5 energy channels: 30-50 keV,157

50-100 keV, 100-200 keV, 200-350 keV and 350-600 keV. The data period used for this158

part of the study was from 1 May 2010 to 28 February 2015 and employed all energy159

channels available from the instrument. Since this study is concerned mainly with the160

trapped electrons, the study used the telescope with the closest pitch angle to 90 degrees,161

This turned out to be telescope 3, although telescopes 1-5 all had pitch angles close to 90162

degrees and over the concerned time scales, had a negligible di↵erence in the fluxes.163

Solar wind and geomagnetic indices were used as input data for training the models. The164

1-minute solar wind velocity, density and IMF z-component data were obtained from the165

OMNI website (http://omniweb.gsfc.nasa.gov/ow min.html), while the Dst geomagnetic166

index was from the World Data Center for Geomagnetism, Kyoto (http://wdc.kugi.kyoto-167

u.ac.jp/index.html).168
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4.2. Model Training

A data period was selected for the model training. The training data was from 1 March169

2011 to 28 February 2013. For the training data, the 1-minute corrected electron flux170

values were daily averaged between 00:01:00 UTC and 00:00:00 UTC the next day for171

each day, resulting in training 790 data points.172

The inputs to these models are more complicated in terms of prediction when compared173

to the > 800 keV and > 2 MeV energy channels. The studies by Boynton et al. [2013b]174

and Balikhin et al. [2012] showed that the time delay in the reaction of electron fluxes to175

changes in the solar wind increased with the energy. The high energy models of > 800176

keV and > 2 MeV had minimum time delays of one day and thus it is possible to forecast177

one day into the future. However, the value of the solar wind in the current day will e↵ect178

the low energy electron flux on the same day. Therefore, it is not possible to forecast one179

day ahead. To get around this problem, the past 24 hour averages were calculated for180

each hour, as previously described. Therefore, the input time lags in the algorithm, num ,181

were shifted hourly not daily. For example, if input U(t � 10 hours) is selected by the182

model, this monomial represents the average of the points between U(t � 10 hours) and183

U(t� 34 hours).184

The algorithm was run for the 5 energy ranges using lagged inputs from 2 to 48 hours.185

These inputs were the solar wind velocity and density, the amount of time the IMF is186

southward in a 24 hour period, the Dst index, and the term resulting from the coupling187

function proposed by Balikhin et al. [2010] and Boynton et al. [2011b], BT sin6(✓/2) (where188

BT =
p

(B2
y + B2

z ) is the tangential IMF and ✓ = tan�1(By/Bz) is the clock angle of the189

IMF).190
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For the 30-50 keV, a compromise had to be made between producing a reliable forecast191

and the amount of time the model can forecast into the future. The model detected by192

the algorithm included input terms with a 6 hour time lag and thus could only forecast193

6 hours into the future. To increase the length of the forecast, the  6 hour time lagged194

monomials were manually removed from the algorithms search to see if the performance195

of the model, based on PE and the CC, dropped significantly. It was found there was only196

a negligible drop in performance if the detected model had input terms with a minimum197

of 7 hour time lag. This process of removing monomials with larger and larger time lags198

was continued until there was a significant performance drop in the model output. This199

occurred after t� 9 hour time lags were removed from the search, resulting in inputs with200

a minimum time lag of 10 hours. This was used as the final 30-50 keV model and could201

forecast the past 24 hour average of the flux 10 hours in the future. This methodology202

was repeated for the other 4 energy channels and as with the studies by Boynton et al.203

[2013b] and Balikhin et al. [2012], the time delay of electron fluxes increased with the204

energy.205

4.3. Final Model Performance

The performance of the models were analysed statistically using the PE and CC. Each206

of the models were run on the data from 1 March 2013 to 28 February 2015. At first the207

models were run on the daily averaged data which results in 730 points for the period.208

Then the models were extended to 1-hour resolution of the past 24 hour average, which209

contains 17520 points, to assess the models performance with an increase of the temporal210

resolution.211
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Table 1 lists the performance of the five low energy electron flux models, showing the212

PE and CC on the 1-day resolution data and the PE and CC on the 1-hour resolution213

data. The Table also shows the minimum time lag used in the model and thus how far214

ahead the model can forecast into the future. This is in agreement with the studies by215

Boynton et al. [2013b] and Balikhin et al. [2012], since the minimum time lags increase216

with energy. The results of the five models on the 1-hour resolution data are illustrated217

in Figures 3 (30-50 keV model), 4 (50-75 keV model), 5 (100-200 keV model), 6 (200-350218

keV model) and 7 (350-600 keV model). The Figures show the observed GOES electron219

flux in blue and the model forecast in orange.220

5. Discussion

One of the aims of this study was to increase the temporal resolution of the forecasts of221

the > 800 keV and > 2 MeV GEO electron fluxes models that currently operate online.222

These models provide daily averaged one day ahead forecasts for each UTC day. Increasing223

the resolution of the model by using one hour averages of the GOES data is not that224

simple because during a 24 hour GEO orbit there is a significant spatial variation of the225

electron fluxes that is independent of any temporal changes due to adiabatic acceleration226

and loss. This is due to changes in the structure of the terrestrial magnetic field, where227

compressions on the dayside increase the strength of magnetic field and thus accelerate the228

electrons. Therefore, higher fluxes are observed when GOES is situated at noon compared229

to midnight were the magnetic field is weaker at GEO. This spatial variation makes it230

di�cult to deduce a data based model because the satellites position is always changing.231

As such, to achieve the aim of increasing the temporal resolution, we employed a moving232

average of the preceding 24 hours calculated every hour. We applied the existing > 800233
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keV and > 2 MeV GEO electron fluxes models to this 1-hour averaged data because these234

models have already been proven to be reliable in their online operation (Balikhin et al.,235

[2015] submitted to Space Weather). This change in input time resolution resulted in high236

values for the PE and CC, higher than those reported by Boynton et al. [2015]. Boynton237

et al. [2015] showed, using the 1-day resolution data, that the > 2 MeV model had a PE238

of 78.6% and a CC of 89.4% and that the > 800 keV model had a PE of 70% and a CC239

of 84.7% between the 1 January 2011 and 30 June 2012, all of which are lower than the240

results shown in this study. However, these statistics should really be compared over the241

same time time period. Based on the time period between the 1 January 2011 and 30242

June 2012 the 1 hour PE was 76.0% and the CC was 87.5% for the > 800 keV model243

and the PE was 82.3% and the CC was 90.8% for the > 2 MeV model. Therefore, these244

models perform better using the 1-hour resolution data. This was also the case for three245

out of the five lower energy models. Only the two lowest energy models performed worse246

on the 1-hour resolution data.247

One of the limitations of the three lowest energy models is that they forecast less time248

into the future than the higher energy models, since the low energy electron fluxes at GEO249

respond to solar wind changes significantly faster than high energy electrons [Balikhin250

et al., 2012; Boynton et al., 2013b]. The 30-50 keV model is only able to forecast the251

24 hour average electron flux 10 hours into the future, which means that 14 hours of252

this average is already measured. Also, it should be noted that better models with higher253

performance statistics for the MAGED models, except for the 350-600 keV energy channel,254

could be obtained if the forecast length was sacrificed. For example, the 30-50 keV model255
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had a 4% higher PE if 6 hour time lags were included in the algorithm but this would256

mean that 18 hours of the forecast had already been measured by GOES.257

6. Conclusions

The aim of this study was to create forecast models for the electron flux energy ranges258

observed by the third generation GOES satellites, which have an increased temporal259

resolution over the > 800 keV and > 2 MeV GEO electron fluxes models that were260

previously developed Boynton et al. [2015]. As such, this study has deduced five new 1-261

hour resolution models for the low energy electrons measured by GOES, ranging in energy262

from 30 keV to 600 keV and extended the existing > 800 keV and > 2 MeV GEO electron263

fluxes models to forecast at a 1-hour resolution.264

All of these models will be implemented in real time to forecast the electron fluxes on the265

University of She�eld SpaceWeather website (www.ssg.group.shef.ac.uk/USSW/UOSSW.html).266
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Figure 1. The past 24 hour average > 800 keV electron flux measured by GOES in blue and

the model 24 hour ahead forecast in orange for the period from 1 January 2011 to 28 February

2015
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Figure 2. The past 24 hour average > 2 MeV electron flux measured by GOES in blue and

the model 24 hour ahead forecast in orange for the period from 1 January 2011 to 28 February

2015
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Figure 3. The daily average 30-50 MeV electron flux measured by GOES in blue and the

model 24 hour ahead forecast in orange for the period from 1 March 2013 to 28 February 2015
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Figure 4. The daily average 50-100 MeV electron flux measured by GOES in blue and the

model 24 hour ahead forecast in orange for the period from 1 March 2013 to 28 February 2015

D R A F T June 26, 2015, 4:45pm D R A F T



X - 22 BOYNTON ET AL.: GOES ELECTRON FLUX MODELS

Date
15/04/2013 14/06/2013 13/08/2013 12/10/2013 11/12/2013 09/02/2014 10/04/2014 09/06/2014 08/08/2014 07/10/2014 06/12/2014 04/02/2015

1
0

0
-2

0
0

 k
e

V
 E

le
ct

ro
n

 F
lu

x
(c

m
2
 s

r 
d

a
y 

ke
V

)-1

7.5

8

8.5

9

9.5

Observed
Model

Figure 5. The daily average 100-200 MeV electron flux measured by GOES in blue and the

model 24 hour ahead forecast in orange for the period from 1 March 2013 to 28 February 2015
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Figure 6. The daily average 200-350 MeV electron flux measured by GOES in blue and the

model 24 hour ahead forecast in orange for the period from 1 March 2013 to 28 February 2015
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Figure 7. The daily average 350-600 MeV electron flux measured by GOES in blue and the

model 24 hour ahead forecast in orange for the period from 1 March 2013 to 28 February 2015
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