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Summary

This deliverable is an extension of the PROGRESS project according to Amendment 23.
It encapsulates the work originally proposed by the participant SRI as part of Tasks T3.4,
T3.5, and T3.6 of Work Package 3. During the main period (2015-01-01 to 2017-12-31)
of the project, SRI began to develop their forecast models for the geomagnetic indices
Kp, Dst , and AE . Unfortunately, these models were never delivered. During the Project
extension phase (2018-01-01 to 2018-07-31) the PROGRESS participants were given extra
time to complete the development of these models and deliver the resulting products.

SRI originally promised to develop models for geomagnetic indices based on the fol-
lowing methodologies:

• a recursive, robust bilinear dynamical model

• a Guaranteed NARMAX Model

The Commission proposed that the Project reallocate some of the tasks allotted to SRI to
other participants with the knowledge and skills to complete them. Following discussions
with SRI and IRF it was agreed that

• SRI will continue to develop their models for Kp, Dst , and AE based on their
Guaranteed NARMAX Model,

• USFD will develop models of the Kp and Dst indices based on the recursive, robust
bilinear dynamical methodology.

• USFD will study the Lyapunov Exponents of the Dst data set in order to determine
the forecast horizon

• IRF will investigate the performance of the models, perform an inter-comparison

These subtasks were incorporated into a new task, T3.7, within WP 3.
This document is a new deliverable, D3.7, which reports on the modelling method-

ologies employed, the resulting forecasts, and compares the solar wind driven prediction
models of the Kp, Dst , and AE indices developed by IRF, USFD, and SRI.
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1 Introduction

Several different prediction models that build on different modelling approaches have
been developed in the PROGRESS project. All models rely on algorithms that derive
functions from observed data that maps from solar wind data to geomagnetic indices.
The models developed build on neural networks (NN) (IRF), non-linear autoregressive
moving-average with exogenous inputs (NARMAX) (USFD), regression modelling (RM)
to construct NARX models (SRI), and genetic programming (GP) (SRI).

This document describes

• the methods involved in the development of these models,

• examples of their forecasts,

• a comparison of the performances of the models developed within PROGRESS using
various statistical measures.

2 Data sources

For the solar wind there exists several different data sources that can be used depending
on the requirements. As this report is concerned with testing and comparing the model
outputs we do not consider real-time data.

2.1 OMNI

There exists two different OMNI sets, a high resolution set with 1-minute data and a
low-resolution set with 1-hour data. The low resolution set has been used for the model
developments. The solar wind data in the OMNI set come from many different spacecraft,
but from 1998 and onwards it is dominated by data from the ACE spacecraft. The solar
wind data have been propagated from spacecraft location to a point just upstream of the
Earth.

2.2 ACE L2

The ACE Level 2 (L2) data are verified science level data. Different data products exist
but for the models here the 64 second merged plasma and magnetic field data have
been used. The ACE spacecraft moves in an orbit around the Lagrange 1 (L1) point
approximately 1.5 million km upstream from Earth.

2.3 Kp index

GFZ provides both nowcast (real-time) and definitive Kp where the definitive data typi-
cally are available up to the past month from https://www.gfz-potsdam.de/en/kp-index/.
For this study the definitive data are used.
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2.4 Dst index

WDC-Kyoto provides the Dst index at three different processing levels: final before 2015
(http://wdc.kugi.kyoto-u.ac.jp/dst final/index.html), provisional 2015–2016 (http://wdc.kugi.kyoto-
u.ac.jp/dst provisional/index.html), and real-time from 2017 (http://wdc.kugi.kyoto-u.ac.jp/dst realtime/index.html),
as of May 2018. Thus, about 5 months of data used come from the provisional set while
the rest are real-time data. The real-time data is a live data set and past values will
change with time due to updates of reported data from the four observatories (Kakioka,
Honolulu, San Juan, and Hermanus) and due updated quiet level estimates. The updated
real-time Dst is the best at the time of derivation (priv. comm. M. Nosé).

2.5 AE index

WDC-Kyoto also provides the AE index as either a quick-look (quasi-real time) product
for monitoring, diagnostic, and forecasting purposes only, provisional values , or final data
products.

Quick-look AE products are released with the following provisos.

• Values are derived from raw unverified data and often contain spikes.

• Values may be revised as more data become available or base lines are corrected.

• Values will be replaced by provisional and then final values at a later date.

They are available for the period from January 2018 at http://wdc.kugi.kyoto-u.ac.jp/ae realtime/index.html.
Provisional AE values are available for the period January 1996 to March 2018 at

http://wdc.kugi.kyoto-u.ac.jp/ae provisional/index.html.
Final AE values are generally available for the period 1975 to 1988 but there are data

gaps at http://wdc.kugi.kyoto-u.ac.jp/aeasy/index.html

3 Models

Here we give a short overview of the models. The name of each model is identified by the
acronym of the institute responsible for the model development and the target output.
As the model terms have been determined from data it is important to specify what data
and which periods have been used for model development so that tests can be performed
on independent datasets, which is summarised in Table 1.

This section provides a detailed background to the modelling methodologies used for
the development of forecast models for the geomagnetic indices Kp, Dst , and AE . In
the framework of the PROGRESS project the methods used are based on Artificial Neu-
ral Networks (ANN) and variants of the NARMAX (Nonlinear AutoRegression Moving
Average with eXogeneous inputs) systems identification technique.
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Table 1: Models with data sources and data periods used for model development.

Model Horizon Source Data period

IRF-Kp-2017 3h ACE L2 1998 – 2015 except 2001 and 2011
USFD-Kp 3h OMNI 1998 – 2017
SRI-Kp-GP 3h OMNI 2006
SRI-Kp-RM 3h OMNI 1976 – 2008

IRF-Dst-2017 1h OMNI 1963 – 2015 except 1981, 1996, 2001, and 2008
USFD-Dst 1h OMNI 2001 – 2002
USFD-Dst 3h OMNI 2001 – 2002
SRI-Dst-GP 1h OMNI 2006
SRI-Dst-RM 1h OMNI 1976 – 2008
SRI-Dst-RM 3h OMNI 1976 – 2008

IRF-AE-2017 ACE L2 1998 – 2015 except 2001, 2005, and 2013
SRI-AE OMNI 2013-03-12 – 2013-06-03

3.1 Artificial Neural Networks

The development of methodologies based on Artificial Neural Networks for the forecast of
geomagnetic indices has been described in detail in deliverables D3.4 Kp and Dst models
and deliverable D3.5 - AE models.

3.2 NARMAX

NARMAX (Nonlinear AutoRegressive Moving Average models with eXogenous inputs)
type models (Leontaritis & Billings 1985a,b, Billings 2013) can capture the dynamics of
a nonlinear system, providing both the ability not only to forecast the evolution of a
system but also to provide insight into the physical processes underlying the dynamic of
the system. A NARMAX model describes the current output of a system as a function
of the time lagged input parameter set and previous system output values. This may be
expressed in the form (1)

y(k) = F [y(k − 1), ...y(k − n), u(k − 1), ...u(k − n), e(k − 1), ...e(k − n)] (1)

where k represents the current measurement time, n the number of time lags, y is the set
of output parameters at lags (k− 1) to (k− n), u the set of system inputs, and e a set of
error terms. F [] represents a nonlinear function, typically either a polynomial, B-spline,
or radial basis function. For the purposes of the models developed within PROGRESS
F [] is a polynomial function.

The first task within the generalised NARMAX methodology is to determine the
structure of the model, i.e. to determine the most significant model parameters. Within
the PROGRESS project, there are three different methodologies employed to do this task.
An overview of thee methods is given in the next three sections.
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3.2.1 Guaranteed NARMAX Method

The Guaranteed NARMAX Model (GNM) views the Sun-Earth system as a nonlinear
dynamical system of a black box type with solar wind parameters as the input, and geo-
magnetic indices as the output. This approach seeks to describe its dynamics and predict
its future state using as little a priori knowledge as possible. This is justified by the fact
that the current understanding of solar-terrestrial physics is patchy at best. GNM com-
bines the ideas of NARMAX (Leontaritis & Billings 1985a) and Guaranteed Estimation
(Schweppe 1968) approaches resulting in a variant on the traditional NARMAX model .

The cornerstone idea of the GNM model comes from the Guaranteed Estimation (GE)
approach which predicts an interval that contains the true value of the predictand with
a guarantee, rather than a single value with or without an error. The justification for
such a treatment is that supplying a prediction as a single value with an error implies a
stochastic nature of possible deviations from the true value while systems with significant
complexity and strong nonlinearity, such as the Sun-Earth system, do not necessarily
behave stochastically. The GE approach deals instead with a bounded uncertainty of
arbitrary nature. To bind the uncertainty, the training sample is used to build as many
constraints as possible, which are then combined to produce a polyhedron in parameter
space with a (hopefully) finite volume. This procedure requires the training sample to
be representative of the general population, which is possible only to a certain extent.
Thus, in practice, ”with a guarantee” implies ”at a sufficiently high confidence level”,
which is defined by the Lebesgue measure of the training sample in the state space of the
dynamical system considered.

The baseline for this interval is determined using a NARMAX model. Various ap-
proaches are possible (Billings 2013). In this particular study polynomial NARX models
were identified using algorithms based on the genetic progratmming method of Semeniv
(2015) and the regression modelling method of Parnowski (2011). The main difference
between these two approaches is in the way they address the structural identification
problem. The genetic programming approach views it as an optimization problem, us-
ing an algorithm to search for an optimal model structure in a limited space of possible
structures. The regression modelling approach follows a more traditional approach and
tries to compare all possible models, gradually increasing the complexity of the model.

3.2.2 Genetic programming approach

The Genetic Programming (GP) is a widely used population based iterative optimization
technique developed in late 1960s – early 1970s (see e.g. Bosworth et al. 1972). It is an
evolutionary computation technique based on the so-called ”tree representation” (Koza
1992, Koza et al. 2003). The problem is transformed to the GP by performing certain
well-defined steps: the set of terminals for each branch of the model; the set of primitive
functions for each branch of the model; the fitness measure; certain parameters for con-
trolling the run; the stop criterion. GP typically starts with a population of randomly
generated models (regressors) composed from the available input variables (Koza 1992,
Koza et al. 2003, Madar et al. 2005). GP iteratively transforms a population of individu-
als into a new generation of the population by applying analogues of naturally occurring
genetic operations. These operations are applied to individuals selected from the popula-
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tion. The individuals are probabilistically selected to participate in the genetic operations
based on their fitness value. The iterative transformation of the population is executed
in the main generational loop of GP. A population member in GP is a hierarchically
structured tree consisting of functions and terminals. The functions and terminals are
selected from a set of functions and a set of terminals. For example, the set of operators
can contain the basic arithmetic operations: {+, -, ×, ÷,

√}. Potential solution may
be depicted as a rooted, labelled tree with ordered branches, using operations from the
function set and arguments from the terminal set.

Population members represent linear and nonlinear base functions. The parameters are
joined to the model after extracting these functions from the tree, and they are determined
using the least squares method. One can extract the function terms by decomposing
the tree starting from the root. If the set of operators is defined as F = {+, ×} and
there is a syntactic rule that exchanges the underlying internal nodes to ×-type and
+-type nodes, the algorithm will generate only polynomial models. The most widely
used selection strategy is the roulette-wheel selection. In the roulette-wheel selection,
every individual (model structure) has a probability to be selected as parent, and this
probability is proportional to fitness value φj, which is a mean of fitness value φj of
the individual j, which can be defined in a number of ways. When an individual is
selected for reproduction, three operations can be applied: direct reproduction, mutation
and crossover (recombination). The probability of mutation is pm, the probability of
crossover is pc, and the probability of direct reproduction is 1− pm− pc.

According to the values pm, pc, and φj (which are set by the investigator) the pro-
cedure of model reconstruction is conducted. The direct reproduction puts the selected
individual into the new generation without any change. In mutation a random change is
performed on the selected tree structure (model) by a random substitution. If an internal
element (an operator) is changed to a leaf element (an argument), the structure of tree
will change too. In crossover two individuals are selected, and their tree structures are
divided at a randomly selected crossover point, and the resulting sub-trees are exchanged
to form two new individuals (model structures). Before calculation of model parameters
using the least squares method the cut procedure is provided for deleting identical model
sub-trees (regressors). The model selection is stopped when the fitness value φj exceeds
the target value, or the maximal number of generation (iterations) is reached.

Speaking less technically, the process of regressors selection according to evolutionary
principle is similar to the biological process of organisms survival. In the same way as
in nature, genetic algorithms search perfect individuals without using information about
them. Every individual has a fitness value that expresses the efficiency of the correspond-
ing solution for describing the data. Better solutions are assigned higher values of fitness
than worse solutions. The fitness function also determines how successful the individual
will be at propagating its genes to subsequent generations in the next population. It per-
mits to select the most adapted individuals according to the evolution survival principal.
After that the fitness functions values are calculated and the most enduring individuals
are chosen to generate the new population by randomly applying one of genetic operators:
mutation, recombination and crossover.

The implementation of this procedure used in PROGRESS was developed by Semeniv
(2015). It uses individual fitness functions in the form of linear correlation with the pre-
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dictand, with a penalty for model complexity. The main difference with earlier instances
is the degree of polynomial nonlinearity: the article Semeniv (2015) was limited to linear
and bilinear models, while in PROGRESS fifth power polynomial models are used.

3.2.3 Regression modelling approach

The Regression Modelling (RM) is a method for constructing polynomial NARX models of
strongly nonlinear stochastic dynamical systems with feedback, featuring processes with
vastly different time scales, based on ANOVA. It was developed by SRI NASU-NSAU
in the context of space weather prediction (Parnowski 2011). It constructs the model
over a large enough training sample in several steps: first an AR model is constructed
(in several smaller steps for performance reasons), then an ARX model, and finally a
NARX model. At each step insignificant regressors are identified with the F-test and
discarded; the procedure repeats until only significant regressors remain. The parameters
are determined using the least squares method. Nonlinear regressors are constructed from
the most significant regressors of the ARX model. After the model is constructed, it is once
again put through the F-test, but on a different sample to reduce overfitting. The resulting
model stays current for at least one solar cycle unlike some other approaches, which require
the model to be updated annually. Of course, this leads to greater complexity.

The difference to the models developed earlier using the same approach is the greater
degree of polynomial nonlinearity: 4 instead of 3.

3.2.4 FROLS and the ERR

In contrast to the NARMAX methodologies mentioned above in Section 3.2.2 and Sec-
tion 3.2.3 that have been developed at SRI, the NARMAX implementation developed at
USFD uses a different set of methods to determine the model structure.

The USFD NARMAX methodology employs the Forward Regression Orthogonal Least
Squares (FROLS) algorithm and its several variants (Billings et al. 1989, Chen et al. 1989,
Wei et al. 2004, Wei & Billings 2008, Billings 2013) to fit a NARMAX model based on
the input and output data sets by identifying the monomial terms that have the greatest
influence on the evolution of the model output parameter data set. Candidate monomial
terms are calculated using the mathematical combination of the input parameter terms
using a predefined set of mathematical operators (such as {+, -, ×, ÷,

√}). The candidate
terms may be composed of linear, quadratic, or higher terms of the input parameters
measured at a set of discrete time lags. This process may result in many thousands of
possible candidate terms, most of which have very little influence on the system output.

Within FROLS, the selection of the most significant terms is made based on the
calculation of the Error Reduction Ratio (ERR). The ERR quantifies the proportion of
the variance of the output signal that may be attributed to each candidate monomial
term, ranking them from highest to lowest. The term with the highest ERR value is
chosen as a model term and its contribution to the system output is taken into account
using an orthogonalisation procedure. This process is then repeated to reveal other model
terms until either sufficient terms have been extracted to account for the majority of the
input signal variance or the model residual is purely random.
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USFD is currently developing a Machine Learning Enhanced NARMAX Model Av-
eraging framework and a NARMAX Model Ensemble approach, implemented through
modern sparse dictionary learning techniques, to enhance and improve models’ robust-
ness and reliability.

Once the set of model terms has been identified their coefficients are determined using
a least squares fitting algorithm.

3.2.5 Bi-linear NARMAX models

As briefly mentioned in Section 3.2, and elaborated on further in Section 3.2.4, the NAR-
MAX methodology is capable of approximating the output signal of a system by de-
termining a set of model terms based on the input parameters of the system. In the
general NARMAX methodology, all linear, quadratic, and higher power input terms may
be considered in virtually any combination to deduce the best model.

Bi-linear models represent a subset of NARMAX models. This class of models are
characterised by being composed of only the set of cross product terms of explanatory
variables that may be described as ’linear in the parameter’. As an example, consider
a system with two sets of input scalar values, x, and y. A bilinear model is simply the
weighted sum of combinations of these parameters.

z =
∑
i,j

mi,jxiyj (2)

4 Data sets used to develop the models

The models developed here are based on the analysis of near real time (NRT) data sets
available from the OMNI2 database, maintained by NASA GSFC, SPDF and NSSDC.
The parameters representing the system input are IMF (total intensity, 2 angular and
3 Cartesian components) and SW plasma parameters (density, proton temperature, and
velocity), together with previous values of the system output, either the Dst or Kp index.
Typically, values with an hourly cadence are used as measurements of the input and
output parameters of the system.

5 Validation techniques

The validation of GNM is somewhat problematic due to its output being an interval, and
not a single value. A quick analysis of existing validation techniques showed that there
are no readily available solutions for this case.

The näıve approach to validation of interval forecast would be measuring the per-
centage of cases when the observed value was within the prediction interval. Ideally, it
should match the confidence level of the interval, but in reality it is slightly different due
to different statistical properties of training and validation samples. It naturally prefers
forecasts with large prediction intervals, which have little practical value, so its usefulness
is rather objectionable, however we still calculated this score.
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Fortunately, it is possible to treat this type of forecast as a dichotomous, a probabilistic,
or a multi-category (in case of Kp index) forecast (see http://cawcr.gov.au/projects/verification/
for details).

The most productive approach is treating the interval forecast as a probabilistic fore-
cast using the following convention:

• the storm is defined as Dst ≤ -50 nT for the Dst forecast and Kp ≥ 50 (Kp ×10 ≥
50) for the Kp forecast;

• if the guaranteed interval is defined not as a confidence interval, it is assigned a 90%
confidence level;

• if the whole interval is in the storm region, the probability of the storm is defined
as pi = (1 + CL)/2, where CL is the confidence level of the interval;

• if the whole interval is in the calm region, the probability of the storm is defined as
pi = (1− CL)/2;

• if the interval crosses the boundary between the calm and the storm regions, the
probability of the storm is defined as pi = (1 − CL)/2 + CL × q, where q is the
fraction of the interval?s length located in the storm region.

The last item is justified by the Bayes axiom due to the requirement of GE approach
not to assume any specific distribution of errors.

Another related problem is that there is no evident reference forecast to compare to,
because it seems impossible to define either persistence or climatology interval forecasts.
Thus, for a two-category (storm or calm) probabilistic forecast the only relevant metric
is the Brier score, defined as:

BS =
1

N

N∑
i=1

(pi − oi)2 (3)

where oi is the indicator if a storm actually occurred (1 is storm, 0 is calm), and N is the
number of data points. The Brier score ranges from 0 to 1 with 0 being a perfect score.
Note that it is favourable towards rare events, so it can be used to compare different
forecasts only over samples with equal storm occurrence rates. Still, this is probably not
the perfect approach, as it completely ignores the actual observed value.

The dichotomous treatment is similar to the probabilistic one with the confidence level
set to 100%, and the linear dependence on q in the last item replaced with a Heaviside
step function going from 0 to 1 at q = 0.5. Then, a contingency table can be constructed
together with all the familiar metrics based on it. However, this approach does not depend
on the length of the prediction interval, and is the same as for a deterministic forecast,
so we do not use it.

It is also possible to treat guaranteed Kp forecast as a multi-category forecast following
the same guidelines. In this case, ranked probability score should be used instead of the
Brier score. We did not pursue this validation strategy to retain comparability between
Dst and Kp forecasts.
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Validation of AE was performed in the same manner as for Dst and Kp models. The
boundary value of the AE index for the calculation of Brier score was 400 nT.

A program for calculating the Brier score is available in the form of FORTRAN source
code with a configuration file.

6 Artificial Neural Network Models

Forecast models for the geomagnetic indices Kp Dst and AE have been developed by
IRF based on ANN methodologies. These models, known as IRF-Kp-2017, IRF-Dst-2017,
and IRF-AE-2017,

The IRF-Kp-2017 model is an ensemble of ANNs to predict the Kp index. The in-
puts to the IRF-Kp-2017 model are solar wind plasma and magnetic fields, and periodic
functions of time-of-year and time-of-day. The high resolution ACE L2 data are first
propagated from L1 to upstream the Earth and then transformed to 3 hour resolution
using averages, minima, and maxima of the solar wind parameters. The model predicts
with lead times of 0, 1, 2, and 3 hours in excess of the propagation lead time. Further
details may be found in PROGRESS deliverable D3.4.

The IRF-Dst-2017 model is an ensemble of ANNs to predict the Dst index. The in-
puts to the IRF-Dst-2017 model are solar wind plasma and magnetic fields, and periodic
functions of time-of-year and time-of-day, using 1-hour averages. The model was devel-
oped using OMNI data, therefore no propagation was required. However, for real-time
operation or testing using ACE L2 data the solar wind must first be propagated. The
model predicts with lead times of 0, 1, 2, and 3 hours in excess of the propagation lead
time. Further details may be found in PROGRESS deliverable D3.4.

7 Guaranteed NARMAX Models

7.1 Data source

Development of the Kp, Dst , and AE GNM is based on data from the OMNI2 database,
maintained by NASA GSFC, SPDF and NSSDC.

For the Kp (SRI-Kp-GP, SRI-Kp-RM) and Dst (SRI-Dst-GP, SRI-Dst-RM) data with
an hourly cadence were selected. Naturally, only those parameters which are available in
NRT, namely the IMF (total intensity, 2 angular and 3 Cartesian components) and SW
plasma parameters (density, proton temperature, and velocity), and previous values of
either Dst or Kp index were used.

For construction of GNM with GP algorithm we used the annual dataset for 2006 for
training, from which only the product V × Bz and the previous values of the predictand
with a maximum lag of 54 hours were used.

For construction of GNM with RM algorithm we used 3 samples: years 1976 to 2000
for model training, and 2001 to 2008 for model tuning (these two have approximately
equal number of data points). We did not use the data from 2009 due to anomalously
quiet solar wind conditions at that time. All IMF and SW plasma data with lags up to 24
hours, as well as previous values of the predictand with lags up to 27 days (1 Carrington
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period of the Sun) were used. Using large maximum lag for geomagnetic indices allows
our models to take into account recurrent space weather events. To simulate diurnal and
seasonal variations we also added 4 synthetic inputs, which are simply sine and cosine
functions with periods of 12 hours and 6 months. Together with either of two geomagnetic
indices this makes 14 inputs.

For the validation of both versions of GNM we used a sample from 2010 to 2017 and
annual samples for years 2014 through 2017.

Development of the AE GNM is based on hourly cadence data from the OMNI2
database for the period from 2013-03-12T11:00:00Z to 2013-06-03T18:00:00Z (2000 hours)
for training, from which only the product V ×Bz and the previous values of the predictand
without lag were used.

As in the case of the Kp and Dst models, the AE model validated using annual samples
for years 2014 through 2017.

7.2 Implementation

Using the GNM methodology, several forecast models have been generated. As well as
generating models using the GP and RM algorithms, the forecast horizons were also
varied. The list of models is shown in Table 1.

A single GNM model for the AEwas built using a GP algorithm for structural iden-
tification and least squares method for parametric identification. A complete description
is given in Section 3.2.1.

In the GP version of GNM, the half-width of the prediction interval is defined as the
maximum difference between adjacent values of the predictand in the training sample.

The GP version of GNM is available as a set of MATLAB .m files, which contain the
models for both Dst and KpṪhe user can choose an input data file in OMNI2 format,
the index to be predicted, and the number of records to be processed in the input file.
The output is provided as a plot and as an ASCII file, which contains the number of
the record, the observed value of the index, and the bottom and top boundaries of the
prediction interval. The format string for the Kp forecast is (I5, 4I6), the Dst forecast
(I6, F7.0, 2F9.2), and the AE (6E16.7). Basic documentation is provided in the form of
a readme file.

In the RM version of GNM, the half-width of the prediction interval is defined as two
root mean square errors measured on the test sample, so the guaranteed interval is a
roughly 95% confidence interval.

The RM version of GNM is available as a set of source code files adhering to FORTRAN
90 fixed form standard (.for), a set of ASCII files containing the models (.res, .cov), and a
set of ASCII configuration files (.cfg). The programs are controlled by configuration files,
which contain basic usage instructions. The user can choose which parameter to forecast,
with what lead time, set input data file name, format, and fill values, set usage flags,
cadences, and maximum lags per parameter, choose which model to use, the name and
the format of the output file, and the name of the metadata file. Models (.res) are written
in a format readable both by a machine and a human, which allows notating an arbitrary
polynomial. Each model is supplied with a covariance matrix (.cov) used to calculate a
guaranteed interval. The output file contains at most the following data: the number
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of the record, year, month, day of month, day of year, UT hour, the observed value of
the index, and the bottom and top boundaries of the prediction interval. Only ASCII
output is provided; plots should be produced by the user. The metadata file contains the
following information: number of the predictand, lead time, cadence of the predictand,
start and stop times of the output file, root mean square error, prediction efficiency,
and linear correlation coefficient of the prediction baseline and of the persistence with
respect to observation, and the skill score (relative reduction of root mean square error in
comparison to persistence). Basic documentation (readme file) is provided.

8 Bilinear models

8.1 Data source

The data with which the NARAMX bilinear models are build comes from the OMNI2
database, the same as that used for the GNM model mentioned in Section 7.1.

For the bilinear models, data with a cadence of 1 minute were collected and averaged
over a 1 hour period to obtain the input data sources for the models. Any data gaps were
filled using the previous measured value.

8.2 Implementation

The models were created using the FROLS and ERR methodology, described in Sec-
tion 3.2.5, to select the most important model terms and their coefficients. These models
were them implemented using two different methodologies to produce one step ahead
(OSA) forecasts, and a model predicted output (MPO).

OSA forecasts are generated by taking the set of measured input parameters i.e. mea-
surements of the solar wind and previous values of the Kp index and using them to
estimate the next value for Kp as described in Equation 4. This process is repeated to
obtain the next forecast estimate of Kp. Since the output from the OSA implementation
is completely based on the availability of measurements the forecast horizon is limited
(one time step) but their accuracy remains high.

ŷ(t) = F [u(t− 1), ..., y(t− 1), ...] (4)

In contrast, MPO forecasts use previous forecasts of the output parameter. These
models are typically primed with a few initial measurements of the input parameters and
then use previous forecasts within their set of input parameters (as described in Equa-
tion 5).

ŷ(t) = F [u(t− 1), ..., ŷ(t− 1), ...] (5)

The values of the Kp index output from these models have not been artificially con-
strained to lie within the range 0 < Kp < 9. As a result, forecast values greater than 9
are possible.
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9 Model Results and Discussion

9.1 GNM models

The GNMs for the three geomagnetic indices were validated using annual datasets from
year 2014 to year 2017. The results are given in Tables 2 and 3. Table 2 shows the
percentage of correct forecasts. A correct forecast occurs when the measured value of the
index lies between the upper and lower confidence limits as defined by the model. The
higher the percentage score, the better the model forecast. Table 3 contains the Brier
score for all datasets.

Table 2: Percentage of correct forecasts for the GNM models.

Model Years
2014 2015 2016 2017 2010-2017

GP Dst 1h 97.4% 97.1% 98.1% 92.7% 91.8%
GP Kp 3h 86.1% 88.3% 85.9% 65.9% 67.9%

GP AE 94.8% 91.4% 91.9% 92.2%
RM Dst 1h 96.3% 96.4% 96.4% 96.2% 96.3%
RM Dst 3h 96.0% 96.3% 95.8% 96.2% 96.0%
RM Kp 3h 95.9% 96.9% 95.6% 97.4% 95.5%

Table 3: Brier scores for the GNM models.

Model Years
2014 2015 2016 2017 2010-2017

GP Dst 1h 1.21% 2.02% 0.97% 0.77% 1.22%
GP Kp 3h 0.25% 0.25% 0.25% 0.25% 0.25%

GP AE 15.69% 19.37% 18.87% 16.51%
RM Dst 1h 0.41% 0.92% 0.48% 0.43% 0.51%
RM Dst 3h 0.97% 1.99% 1.01% 0.75% 1.06%
RM Kp 3h 2.48% 9.44% 5.75% 8.32% 3.93%

As an example of the forecasts generated by the GNMs, Figures 1, 2, and 3 show the
upper (blue) and lower (red) edges of the 95% confidence level interval for the forecasts
of Kp, Dst , and AE . The black line represents the calculated values of the index based
on observations.

Figure 3 shows the output of the GNM model for the storms observed on March 17-18,
2015 (panel a), June 22-23, 2015 (panel b), and September 7-8, 2017 (panel c).

The model for the AE index performed worse than those for Dst and Kp. This can
be caused by the following reasons:
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(a) March 17-18, 2015 (b) June 22-23, 2015 (c) September 7-8, 2017

Figure 1: Retrospective GNM forecasts for the variation in the Kp index. Thin
solid blue and red lines are low and high edges of the RM interval with 3h lead
time, thick dotted red and blue lines are low and high edges of the GP interval
with 3h lead time.

• The AE index has questionable physical meaning and is plagued by contaminations
from regular variations SR, subsurface currents, latitude gap between eastward and
westward auroral electrojets, and uneven distribution of contributing stations. This
was first noted by Rostoker (1972), and a detailed discussion was given by Mayaud
(1980) with some additional points made by Kamide & Rostoker (2004).

• A major contribution to the AE index is provided by substorm activity, which is
caused by poorly understood physical processes in the magnetotail, which seem to be
only partially dependent on solar wind conditions. Thus, L1 data are not sufficient
to correctly describe its dynamics.

• The AE index manifests chaotic dynamics and has higher first Lyapunov exponent
than Dst and Kp so it is less predictable. It could potentially be better forecast
with a chaotic predictor, but there are no readily available methods to construct
one other than by trial and error.

9.2 Bi-linear models

Examples of the forecasts of the NARMAX bi-linear models for the Kp and Dst are shown
in Figure 4 and Figure 5 respectively for the three geomagnetic storm periods shown in
Figures 1, 2, and 3. Figure 4 shows the measurements of Kp in blue and the OSA and
MPO model output in red.

Figure 5 Shows the forecasts for the three geomagnetic storm observed around March
17, 2015 (panel (a)), June 22, 2015 (panel (b)), and September 8, 2017 (panel (c)). The
black line represents measurements of Dst index. The red and green lines show the
forecasts generated by the one and three hour ahead forecast models while the blue line
shows MPO results based on the the model that was initialised at the start of the month
and left to run based on previous forecasts. On the whole, the one and three hour ahead
models do capture the overall variation of Dst during the storms, exhibiting similar onset
and decay times to those observed. The MPO implementation tends to correlate less
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(a) March 17-18, 2015 (b) June 22-23, 2015 (c) September 7-8, 2017

Figure 2: Retrospective GNM forecasts for the variation in the Dst index . Thick
solid black line is observation, thick solid blue and red lines are low and high
edges of the RM interval with 1h lead time, thin solid blue and red lines are low
and high edges of the RM interval with 3h lead time, thick dotted red and blue
lines are low and high edges of the GP interval with 1h lead time.

(a) March 17-18, 2015 (b) June 22-23, 2015 (c) September 7-8, 2017

Figure 3: Retrospective GNM forecasts for the variation in the AE index . The
black line is observation, blue and red lines are the low and high edges of the
prediction interval with 1h lead time.

well with measured values however, it does tend to capture the storm onset times fairly
accurately.

Performance statistics for the two Dst models are shown in Table 4. While most statis-
tics point to a good models performance, it should be noted that they are out performed
by full NARMAX models since bi-linear models may not be sufficient to characterise the
processes occurring. It can be seen from Figure 5 that while the models were able to
forecast the event on March 17-18 2015 to a high degree, the models performed less well
on the other two events considered. This may be an artefact of the use of the shorter
training period (two years data) than was the case with the GNM models.
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Figure 4: Retrospective forecasts of the Kp index for the major geomagnetic
storms that occurred around March 17, 2015 (left), June 22, 2015 (centre), and
September 8, 2017 (right). The blue lines show the measured values of Kp, while
the red show the estimates of the bilinear One Step Ahead and Model Predicted
Output models.

(a) March 17-18, 2015 (b) June 22-23, 2015 (c) September 7-8, 2017

Figure 5: Retrospective bilinear forecasts for the variation in the Dst index for
the three geomagnetic disturbances periods shown in Figures 1, 2, and 3.

10 Lyapunov Exponents of the Dst index

When performing forecasts, it is important to investigate the time horizon beyond which
the prediction interval is large enough to render any forecasts useless. From a dynamical
systems perspective the rate at which forecasts of the system diverge from actual system
measurements can be investigated by calculating the Lyapunov exponents of the system.

Chaotic systems are a class of complex dynamic systems whose motions are extremely
sensitive to initial conditions (Sprott 2003). Trajectories starting with two very close
initial values will normally separate from each other at an exponential rate over time.
Lyapunov exponents were developed to quantitatively measure a nonlinear dynamic sys-
tem’s chaotic property by evaluating the separation behaviour (contraction and expansion
in different directions in phase space) of two orbits which are initially very close to each
other. Lyapunov exponents do not measure transient local behaviour of a system, but an
overall behaviour of the system through a long period of evolution.

In the Lyapunov spectrum, the smallest Lyapunov exponent characterises the speed of
convergence where as the largest Lyapunov exponent signifies the speed of divergence. In
practice, the value of the largest Lyapunov exponent (LLE) plays an important role, this
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Table 4: Forecast statistics for the bi-linear Dst models with 1 and 3 hour ahead
predictions.

Dst model Period Corr PE MSE RMSE NRMSE
1hr March 2015 0.9807 0.9543 49.8087 7.0575 0.2137

17-21 March 2015 0.9698 0.9064 175.8363 13.2603 0.3060
3hr March 2015 0.9422 0.8812 130.5901 11.4276 0.3447

17-21 March 2015 0.9320 0.8193 313.3827 17.7026 0.4251
1hr June 2015 0.9662 0.9277 72.3230 8.5043 0.2689

22-26 June 2015 0.9089 0.7872 346.4754 18.6135 0.4613
3hr June 2016 0.8529 0.6400 580.6235 24.0961 0.6000

22-26 June 2015 0.8520 0.6379 584.4763 24.1759 0.6018
1hr Sept 2017 0.9775 0.9543 26.0482 5.1037 0.2139

6-10 Sept 2017 0.9808 0.9608 59.1425 7.6904 0.1980
3hr Sept 2017 0.8823 0.7618 128.9672 11.3564 0.4880

6-10 Sept 2017 0.8813 0.7516 372.3170 19.2955 0.4984

is because if the largest LLE is positive, then it means that the system is chaotic; if LLE
is equal to zero, it then indicates that there exist periodic or quasi-periodic dynamics in
the process (Eckmann & Ruell 1985).

In the present study of the Lyapunov exponents of the Dst index, the algorithms
developed in Gencay & Dechert (1992)) and Lai & Chen (1998) were used to calculate
Lyapunov exponents of Dst index data for a period of 16 years. The largest and smallest
values of Lyapunov exponents for years 1998 to 2014 are shown in Figure 6. It can be
seen that both the largest and smallest Lyapunov exponents of Dst index are negative,
meaning that Dst index does not show any chaotic behaviour. Our results further confirm
the argument and conclusion given in Temerin & Li (2002) that ”the magnetosphere is
highly predictable and that chaotic behavior within the magnetosphere has little influence
on the large-scale currents that determine Dst”.

11 Model comparison

11.1 Input and target data sources

All models use solar wind data for the inputs and we base the analysis on the ACE L2
plasma and magnetic field 64 second data and the OMNI 1-hour resolution dataset. The
models assume that the solar wind measurements are taken at a location close to the
Earth’s bow shock. As ACE measures at a location around L1 each sample is temporally
shifted from spacecraft location to close to Earth before being temporally transformed.
We simply assume that the travel time of a solar wind sample is (xL1−xBS)/V where we
set xBS = 10RE and V is the solar wind speed.

For the target data we use Kp index from GFZ, Dst and AE indices from WDC-
Kyoto. The temporal resolution of Kp is 3 hours, Dst 1 hour, and AE 1 minute. No
further processing is applied on Kp or Dst but AE is temporally averaged to fit the



Project: PROGRESS
Deliverable: 3.7

Doc No: PROGRESS 3.7
Page: 23 of 38

Figure 6: Variation in the annual maximal and minimal Lyaponov exponents
ofthe Dst index for the period 1998 to 2014.
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resolution of the models.
The number of Kp values in different intervals per year is shown in Figure 7. Top

panel shows all available Kp values, while the bottom panel only counts those Kp values
that have simultaneous ACE 3-hour average data. For example, in 2009 all Kp values are
less than 6.
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Figure 7: Number of Kp values for different intervals per year. Level 5 corre-
sponds to 5 ≤ Kp < 6 and so on up to level 8 with Kp ≥ 8.

Similarly, the number of Dst values in different intervals per year is shown in Figure 8.
Top panel shows all available Dst values, while the bottom panel only counts those Dst
values that have simultaneous OMNI 1-hour average data. In 2009 all Dst values are
above -100 nT.
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Figure 8: Number of Dst values for different intervals per year. Level -25 corre-
sponds to −50 < Dst ≤ −25 and so on up to level -200 with Dst < −200.

11.2 Statistical comparisons

We apply the following statistics on the prediction models:

BIAS =
1

n

n∑
i=1

ȳi − yi (6)

RMSE =

√√√√ 1

n

n∑
i=1

(ȳi − yi)2 (7)

CORR =

∑n
i=1(ȳi − 〈ȳ〉)(yi − 〈y〉)√∑n

i=1(ȳi − 〈ȳ〉)2
√∑n

i=1(yi − 〈y〉)2
(8)

R2 = 1−
∑n

i=1(ȳi − yi)2∑n
i=1(yi − 〈y〉)2

(9)

where ȳ is predicted index, y is observed index, and 〈·〉 is the mean. For a perfect model
we have BIAS=0, RMSE=0, CORR=1, and R2=1. In the case of the GNM models, the
above scores were calculated for the baseline NARMAX model. Scores that take into
account the interval nature of these forecasts were given in Section 9.1.

Table 5 summarises the measures for all Kp models over all data 1998–2017. It should
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be noted that the statistics have been computed on data that to different degrees contain
training data, see Table 1. For comparison we also include the persistence model (Pers)
which simply is

ȳ(t) = y(t−∆t) (10)

where ∆t is the temporal resolution. Thus, predicted value is simply the same as the
past value. All models have BIAS close to zero. Considering RMSE, CORR, and R2 the
IRF-Kp-2017-T0 and -T1 models scores best and have very similar measures. On 3-hour
lead time the IRF-Kp-2017-T3 and SRI-Kp-RM-T3 are the best, with the former slightly
better. All models except the SRI-Kp-GP-T3 scores better than persistence.

Table 5: Statistical measures for all data in 1998–2017 for the Kp prediction
models. Tn indicates lead time with n in hours.

BIAS RMSE CORR R2

Pers 0.00 0.85 0.81 0.62
IRF-Kp-T0 -0.04 0.53 0.92 0.85
IRF-Kp-T1 -0.03 0.53 0.92 0.85
IRF-Kp-T2 -0.02 0.61 0.90 0.80
IRF-Kp-T3 0.01 0.72 0.85 0.73
USFD-Kp-OSA-T1 0.10 0.71 0.86 0.73
USFD-Kp-MPO-T1 0.20 0.78 0.84 0.68
SRI-Kp-RM-T3 -0.07 0.81 0.82 0.66
SRI-Kp-GP-T3 -0.04 1.17 0.62 0.29

Table 6 summarises the measures for all Dst models also over all data 1998–2017.
The shorter lead-time models (T0 and T1) always scores better than the 3-hour lead-time
(T3) models. The BIAS is generally very small. The SRI-Dst-RM-T1 scores best closely
followed by persistence.

As the models have been derived from data that to different degrees are part of the
data used for the statistics in Tables 5 and 6 it is useful to study the measures for each
each. Figure 9 shows the correlation (CORR) for each model and year, with years not
included in the training set marked with dots. There is some variation over the years, but
the correlation computed on years with training data do not show systematically higher
values, indicating that the measures in Tables 5 and 6 are valid. It is also interesting to
see that 2009 shows lower correlations for all models.

Figure 10 shows RMSE as function of year. For most models the minimum RMSE
occurs in 2009, partly an effect of the very low levels of activity.

In Figure 11 the linear correlations for the Dst models are shown. The SRI-Dst-RM-
T1 model consistently shows highest correlation, and higher that persistence except for
2017. The SRI-Dst-GP-T1 also shows high correlation, but not as consistently, several
years before 2006 have lower correlations. For several of the models 2009 again stands
out with poor performance.
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Table 6: Statistical measures for all data in 1998–2017 for the Dst prediction
models. Tn indicates lead time with n in hours. BIAS and RMSE are given in
nT.

BIAS RMSE CORR R2

Pers 0.01 4.40 0.98 0.95
IRF-Dst-T0 0.69 8.70 0.91 0.82
IRF-Dst-T1 -0.15 8.80 0.90 0.82
IRF-Dst-T2 0.07 9.31 0.89 0.80
IRF-Dst-T3 -1.19 10.04 0.88 0.76
USFD-Dst-BL-T1 0.44 4.48 0.98 0.95
USFD-Dst-BL-T3 0.13 8.10 0.92 0.85
SRI-Dst-RM-T1 -0.01 3.27 0.99 0.97
SRI-Dst-RM-T3 0.07 7.24 0.94 0.88
SRI-Dst-GP-T1 -0.10 6.10 0.96 0.91

The RMSE for the Dst models are shown in Figure 12.

12 Discussion and Conclusions

We have analysed the performance of different index prediction models driven by upstream
solar wind for the years 1998 to 2017. We now discuss the results.

Regarding the inputs the models differ in two fundamentally different ways: with or
without the past target values. As the autocorrelations of the indices are strong that
means that providing past values will in a statistical sense improve the predictions. For
Kp the one- and two-step autocorrelations are 0.81 and 0.69, respectively, corresponding
to 3 and 6 hours lag. For Dst it is even stronger with 0.98, 0.94, and 0.90 for 1-, 2-, and
3-step lags, respectively. There are several reasons for the lower autocorrelation seen in
Kp compared to Dst , but one aspect is that the Kp index is a range index and effectively
filters out low frequency geomagnetic variation improving on its stationarity.

There is a monotonic decrease in performance for the IRF-Kp-2017 model, which do
not use past Kp as inputs, when going from the 0 and 1 hour models, to the 2, and 3 hour
models (Table 5 and Figure 9). This is understood in terms of that the only available
lead-time from a solar wind monitor at Earth bow shock location is up to 1 hour, after
which the predictions start lag. As the SRI-Kp-RM model only provides 3-hour lead-time
predictions it basically picks up the autocorrelation in the Kp series. Thus, past Kp values
are not crucial to the performance.

For the Dst models the situation is quite different. Mapping from solar wind only
(IRF-Dst-2017 model) is more difficult possibly due to changes in baselines (Dst quiet
time levels) and including past observed Dst will help. The autocorrelation is also strong,
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PP

Figure 9: Linear correlation between predicted and observed Kp for the different
models as function of year. Dots indicate that the year was not part of the
training set.

partly attributed to the long decay times of the recovery phases. However, at the onset of
the storms (main phases) the lead time is limited to about 1 hour. The SRI-Dst-RM-T1
model (Figure 11) generally show higher correlation than persistence, except for 2017, as
it utilises both the strong 1-hour autocorrelation and the driving solar wind. However, at
3-hour lead-time (SRI-Dst-RM-T3) the solar wind does not provide predictive capabilities
and the predictions becomes similar to persistence.

By differentiating the Dst index and its predictions we can effectively remove any non-
stationarity and varying base-lines, and also focus on changes in Dst . By selecting only
data for which Dst is below its average (Dst < −13 nT ) and when its derivative is negative
(dDst/dt < 0) we focus on the Dst main phases. Figure 13 shows the linear correlation.
The correlation has dropped for all models, as expected, but now the IRF-Dst-T0 and
-T1 models are above persistence.

When the models are operated in real time there always issues with delays in the
different subsystems of the prediction models. The models used here are computationally
lightweight which means that they introduce insignificant delays, the main delays come
from measurements and their distribution. Any delays in this chain will reduce the true
prediction lead time. Under normal conditions the delay of the SWPC solar wind data
typically lies between 3 to 5 minutes. The construction of the geomagnetic indices from
measurements show longer delays which must be considered if they are used as inputs
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Figure 10: RMSE between predicted and observed Kp for the different models
as function of year. Dots indicate that the year was not part of the training set.

to prediction models. GFZ provides a first estimate of the Kp index about 1.5 hours
into the latest 3 hour interval, known as nowcast KpṪhe latest Kp value is then updated
until typically 30 minutes after the interval has finished. The real-time Dst index from
WDC-Kyoto is typically published 30 minutes into the latest 1-hour interval and may be
updated for 30 minutes after the end of the interval. For both Kp and Dst further changes
may also occur later as better estimates of baselines are determined. For AE there are
no publicly available real-time data.

To conclude:

• Guaranteed NARMAX Models for Dst , Kp and AE indices were constructed using
two different algorithms by SRI.

• All the developed forecasts with the exception of the GP-based Kp forecast, which
has a too wide prediction interval, provide useful information and are ready for
transition to near-real time operations.

• Bi-linear models for the Kp and Dst indices were constructed by USFD.

• The performance of each of the models generated within PROGRESS were assessed
for common periods of data.
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Figure 11: Linear correlation between predicted and observed Dst for the differ-
ent models as function of year. Dots indicate that the year was not part of the
training set.

• For Kp predictions the IRF-Kp-T0 and T1 models performs best, using past Kp
seems to have minor effect.

• For Dst predictions the SRI-Dst-RM-T1 model performs best, past Dst values have
significant effect.

• Lead-times beyond 1 hour is generally not possible.

• For real-time implementation, if past indices are used as inputs it will reduce the
lead time.
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Figure 12: RMSE between predicted and observed Dst for the different models
as function of year. Dots indicate that the year was not part of the training set.

A GNM models

The result of the GNM models is to generate an upper and lower interval range for the in
which the next measurement is expected to lie. These values represent a 90% confidence
level.

A.1 Kp 3h ahead

Model inputs
vBz solar wind velocity multiplied by IMF Bz component
Kp previous values of Kp index
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Figure 13: Linear correlation between predicted and observed dDst/dt for the
different models as function of year for which Dst < −13 nT and dDst/dt < 0.
Dots indicate that the year was not part of the training set.

Kplower = 2.0 ∗ (vBz(k)− sigma) + 0.080369 ∗ (kp(k − 1))

− 0.001150 ∗ (kp(k − 11)) + 0.663028 ∗ (kp(k)) + 2.857337 ∗ (vBz(k))

+ 0.128944 ∗ (kp(k − 2)) + 0.009873 ∗ ((vBz2(k − 2)) ∗ (vBz1(k − 2)))

− 0.017389 ∗ (kp(k − 8)) + 0.302823 ∗ (vBz2(k − 11))

+ 0.056715 ∗ ((vBz(k − 3)) ∗ (kp(k))) + 0.335488 ∗ (vBz2(k − 12))

− 0.000269 ∗ ((vBz2(k − 5)) ∗ ((kp(k − 2)) ∗ (vBz(k − 10))))

− 0.061579 ∗ (((vBz2(k − 10)) ∗ (vBz2(k − 2))) ∗ ((vBz(k − 7)) ∗ ((vBz2(k − 5)) ∗ (vBz2(k − 12)))))

+ 0.287884 ∗ (vBz1(k − 11))− 0.068604 ∗ (vBz2(k − 13))− 0.003930 ∗ (kp(k − 13))

− 2.011700 ∗ (vBz(k − 1)) + 0.023151 ∗ ((vBz(k − 1)) ∗ (kp(k − 2)))

+ 0.644566 ∗ (vBz(k − 14)) + 0.015417 ∗ ((vBz(k − 7)) ∗ (kp(k − 4)))

− 0.000781 ∗ ((kp(k)) ∗ (kp(k))) + 0.020964 ∗ ((vBz1(k − 6)) ∗ (kp(k − 10)))

+ 0.131685 ∗ (vBz(k − 10))− 0.463715 ∗ ((vBz2(k − 4)) ∗ (vBz2(k − 2)))

− 2.549575 ∗ (vBz(k − 3))− 0.523830 ∗ (vBz1(k − 14))− 0.806390 ∗ (vBz1(k))

− 0.624577 ∗ (vBz1(k − 6))− 0.609556 ∗ (vBz1(k − 1))− 0.053833 ∗ (kp(k − 10))

+ 0.048569 ∗ (kp(k − 3)) + 0.179636 ∗ (vBz2(k − 2))− 0.113916 ∗ (vBz(k − 12))

− 0.023299 ∗ (kp(k − 6))− 0.399621 ∗ (vBz2(k − 9))− 2.877131
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Kpupper = 2.0 ∗ (vBz(k) + sigma) + 0.080369 ∗ (kp(k − 1))− 0.001150 ∗ (kp(k − 11))

+ 0.663028 ∗ (kp(k)) + 2.857337 ∗ (vBz(k)) + 0.128944 ∗ (kp(k − 2))

+ 0.009873 ∗ ((vBz2(k − 2)) ∗ (vBz1(k − 2)))− 0.017389 ∗ (kp(k − 8))

+ 0.302823 ∗ (vBz2(k − 11)) + 0.056715 ∗ ((vBz(k − 3)) ∗ (kp(k)))

+ 0.335488 ∗ (vBz2(k − 12))− 0.000269 ∗ ((vBz2(k − 5)) ∗ ((kp(k − 2)) ∗ (vBz(k − 10))))

− 0.061579 ∗ (((vBz2(k − 10)) ∗ (vBz2(k − 2))) ∗ ((vBz(k − 7)) ∗ ((vBz2(k − 5)) ∗ (vBz2(k − 12)))))

+ 0.287884 ∗ (vBz1(k − 11))− 0.068604 ∗ (vBz2(k − 13))− 0.003930 ∗ (kp(k − 13))

− 2.011700 ∗ (vBz(k − 1)) + 0.023151 ∗ ((vBz(k − 1)) ∗ (kp(k − 2))) + 0.644566 ∗ (vBz(k − 14))

+ 0.015417 ∗ ((vBz(k − 7)) ∗ (kp(k − 4)))− 0.000781 ∗ ((kp(k)) ∗ (kp(k)))

+ 0.020964 ∗ ((vBz1(k − 6)) ∗ (kp(k − 10))) + 0.131685 ∗ (vBz(k − 10))

− 0.463715 ∗ ((vBz2(k − 4)) ∗ (vBz2(k − 2)))− 2.549575 ∗ (vBz(k − 3))

− 0.523830 ∗ (vBz1(k − 14))− 0.806390 ∗ (vBz1(k))− 0.624577 ∗ (vBz1(k − 6))

− 0.609556 ∗ (vBz1(k − 1))− 0.053833 ∗ (kp(k − 10)) + 0.048569 ∗ (kp(k − 3))

+ 0.179636 ∗ (vBz2(k − 2))− 0.113916 ∗ (vBz(k − 12))− 0.023299 ∗ (kp(k − 6))

− 0.399621 ∗ (vBz2(k − 9)) + 7.1928
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A.2 Dst 1h ahead

Dstlower = 2 ∗ (vBz(k)− sigma) + 0.005172 ∗ ((index(k)) ∗ (index(k − 11)))

+ 1.235463 ∗ (index(k) + 0.022015 ∗ (index(k − 11))− 0.341667 ∗ (index(k − 1))

− 0.003082 ∗ ((index(k − 11)) ∗ (index(k − 2))) + 0.219338 ∗ ((vBz(k − 8)) ∗ (vBz(k − 2)))

− 1.237752 ∗ (vBz(k)) + 0.145626 ∗ (vBz(k − 25)) + 1.452662 ∗ (vBz(k − 1))−
− 0.339149 ∗ ((vBz(k)) ∗ (vBz(k))) + 0.070942 ∗ (vBz(k − 24))

+ 0.012110 ∗ ((vBz(k − 1)) ∗ (index(k − 7)))− 0.001412 ∗ ((index(k − 24)) ∗ (index(k − 15)))

+ 0.044802 ∗ ((vBz(k − 25)) ∗ (vBz(k − 25))) + 0.109587 ∗ (index(k − 14))

− 0.011974 ∗ ((index(k − 11)) ∗ (vBz(k − 11)))− 0.025028 ∗ ((vBz(k)) ∗ (index(k)))

+ 0.004214 ∗ ((vBz(k − 10)) ∗ (index(k − 4)))− 0.090366 ∗ (index(k − 15))

+ 0.086876 ∗ (index(k − 22)) + 0.097186 ∗ (vBz(k − 21))

+ 0.002520 ∗ ((index(k − 12)) ∗ (vBz(k − 12) + 0.012706 ∗ ((index(k − 3)) ∗ (vBz(k − 1)))

− 0.011400 ∗ (vBz(k − 22))− 0.277522 ∗ (vBz(k − 12))

− 0.003020 ∗ ((vBz(k − 22)) ∗ (index(k − 17))) + 0.001130 ∗ ((index(k − 24)) ∗ (index(k − 3)))

− 0.185596 ∗ (vBz(k − 5)) + 0.170117 ∗ (vBz(k − 8)) + 0.102031 ∗ (vBz(k − 23))

+ 0.004543 ∗ ((vBz(k − 11)) ∗ (index(k − 12)))− 0.051264 ∗ (index(k − 7))

+ 0.248782 ∗ (vBz(k − 10))− 0.056410 ∗ (index(k − 24))

+ 0.004683 ∗ ((index(k − 11)) ∗ (vBz(k − 1)))− 0.001967 ∗ ((index(k − 7)) ∗ (index(k − 11)))

− 0.010614 ∗ ((vBz(k − 12)) ∗ (index(k − 14)))− 0.204992 ∗ (vBz(k − 20))

+ 0.145746 ∗ (vBz(k − 3)) + 0.011864 ∗ (index(k − 2)) + 0.072516 ∗ (index(k − 4))

+ 0.100750 ∗ (vBz(k − 19)) + 0.156736 ∗ (vBz(k − 14))− 0.034193 ∗ (index(k − 13))

+ 0.173096 ∗ (vBz(k − 6))− 5.0376



Project: PROGRESS
Deliverable: 3.7

Doc No: PROGRESS 3.7
Page: 35 of 38

Dstupper = 2 ∗ (vBz(k) + sigma) + 0.005172 ∗ ((index(k)) ∗ (index(k − 11)))

+ 1.235463 ∗ (index(k)) + 0.022015 ∗ (index(k − 11))− 0.341667 ∗ (index(k − 1))

− 0.003082 ∗ ((index(k − 11)) ∗ (index(k − 2))) + 0.219338 ∗ ((vBz(k − 8)) ∗ (vBz(k − 2)))

− 1.237752 ∗ (vBz(k)) + 0.145626 ∗ (vBz(k − 25)) + 1.452662 ∗ (vBz(k − 1))

− 0.339149 ∗ ((vBz(k)) ∗ (vBz(k))) + 0.070942 ∗ (vBz(k − 24))

+ 0.012110 ∗ ((vBz(k − 1)) ∗ (index(k − 7)))− 0.001412 ∗ ((index(k − 24)) ∗ (index(k − 15)))

+ 0.044802 ∗ ((vBz(k − 25)) ∗ (vBz(k − 25))) + 0.109587 ∗ (index(k − 14))

− 0.011974 ∗ ((index(k − 11)) ∗ (vBz(k − 11)))− 0.025028 ∗ ((vBz(k)) ∗ (index(k)))

+ 0.004214 ∗ ((vBz(k − 10)) ∗ (index(k − 4)))− 0.090366 ∗ (index(k − 15))

+ 0.086876 ∗ (index(k − 22)) + 0.097186 ∗ (vBz(k − 21))

+ 0.002520 ∗ ((index(k − 12)) ∗ (vBz(k − 12))) + 0.012706 ∗ ((index(k − 3)) ∗ (vBz(k − 1)))

− 0.011400 ∗ (vBz(k − 22))− 0.277522 ∗ (vBz(k − 12))

− 0.003020 ∗ ((vBz(k − 22)) ∗ (index(k − 17))) + 0.001130 ∗ ((index(k − 24)) ∗ (index(k − 3)))

− 0.185596 ∗ (vBz(k − 5)) + 0.170117 ∗ (vBz(k − 8)) + 0.102031 ∗ (vBz(k − 23))

+ 0.004543 ∗ ((vBz(k − 11)) ∗ (index(k − 12)))− 0.051264 ∗ (index(k − 7))

+ 0.248782 ∗ (vBz(k − 10))− 0.056410 ∗ (index(k − 24)

+ 0.004683 ∗ ((index(k − 11)) ∗ (vBz(k − 1)))− 0.001967 ∗ ((index(k − 7)) ∗ (index(k − 11)))

− 0.010614 ∗ ((vBz(k − 12)) ∗ (index(k − 14)))− 0.204992 ∗ (vBz(k − 20))

+ 0.145746 ∗ (vBz(k − 3)) + 0.011864 ∗ (index(k − 2)) + 0.072516 ∗ (index(k − 4))

+ 0.100750 ∗ (vBz(k − 19)) + 0.156736 ∗ (vBz(k − 14))− 0.034193 ∗ (index(k − 13))

+ 0.173096 ∗ (vBz(k − 6)) + 4.5847

B Bilinear models

B.1 Kp 3h ahead

Model inputs
n density
V solar wind velocity
p1/2 square root solar wind pressure
BTsin(θ/2)6
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Kp(t) = 3.23556E + 00 ∗BTsin(θ/2)6(t− 1)

+ 5.16727E − 01 ∗Kp(t− 3)

+ 6.06818E + 00 ∗ p(1/2)(t− 1)− 2.73663E − 04 ∗ V (t− 1)Kp(t− 3)

− 3.61748E − 02 ∗BTsin(θ/2)6(t− 1)Kp(t− 3)

+ 3.40164E − 03 ∗BTsin(θ/2)6(t− 2)V (t− 2)

− 4.72410E − 01 ∗BTsin(θ/2)6(t− 2)p(1/2)(t− 3)

+ 1.35797E − 04 ∗ V (t− 1)Kp(t− 6)

− 2.66697E − 01 ∗BTsin(θ/2)6(t− 6)

− 1.46940E + 01

+ 5.95354E − 02 ∗ V (t− 1)− 2.72031E − 02 ∗ V (t− 2)

+ 1.21319E − 01 ∗BTsin(θ/2)6(t− 3)p(1/2)(t− 2)

B.2 Dst 1h ahead

Model inputs
Dst geomagnetic index Dst
V Bs product of solar wind velocity and southward component of IMF / 1000
p wind pressure

Dst = [9.5703e− 01;Dst(t− 1)

− 5.8076e+ 00 ∗ V Bs(t− 1)

+ 1.7470e+ 00 ∗ V Bs(t− 3)

− 1.5876e− 01 ∗ p(t− 1)V Bs(t− 1)

− 1.3126e− 02 ∗ V Bs(t− 1)Dst(t− 1)

− 1.4909e− 01 ∗ V Bs(t− 1)V Bs(t− 3)

+ 3.2692e+ 00

− 7.9361e− 02 ∗ p(t− 3)V Bs(t− 3)

+ 5.9789e− 02 ∗ p(t− 2)V Bs(t− 2)

+ 4.8505e+ 00 ∗ V (t− 1)V Bs(t− 1)

− 6.1593e+ 00 ∗ V (t− 1)

B.3 Dst 3h ahead

Model inputs
Dst geomagnetic index Dst
V Bs product of solar wind velocity and southward component of IMF / 1000
p wind pressure
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Dst = [8.4798e− 01 ∗Dst(t− 3)

− 9.4745e+ 00 ∗ V Bs(t− 3)

− 2.3496e+ 00 ∗ V (t− 3)p(t− 3)

+ 2.4189e+ 00 ∗ V Bs(t− 4)

+ 2.1213e+ 00

+ 6.6787e+ 00 ∗ V (t− 6)V Bs(t− 3)
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