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Summary

The overall aim of WP 3 concerns improvement and new development of models based on
data driven modelling, such as neural networks, support vector machines, and NARMAX.
Existing models for Dst and Kp will be analysed and verified with the aim of finding
weaknesses and to suggest improvements. Solar wind and geomagnetic indices shall also
be analysed in order to develop models for the identification of features, such as (but
not limited to) shocks, sudden commencements, and substorms. Such categorisation will
aid the model development and verification, and can also serve as alternative approach
to models providing numerical input-output mapping. In addition to the development of
Dst and Kp models new models will be developed to forecast AE . The models will be
implemented for real-time operation at IRF and data and plots will be provided on a web
server.

This deliverable is targeted at the development of approaches to verify models pre-
diction geomagnetic indices (Kp, Dst , AE ) from solar wind data at L1. The methods
will then be applied to existing forecast models available to the PROGRESS team. The
results can be used for the further development of the models in WPs 3.4 and 3.5.

Acronyms

ACE Advanced Composition Explorer
DSCOVR Deep Space Climate Observatory
GFZ GeoForschungsZentrum
GSFC Goddard Space Flight Center
NASA National Aeronautic and Space Administration
NCEI National Centers for Environmental Information
NOAA National Oceanographic and Atmospheric Administration
SWPC Space Weather Prediction Center
WDC World Data Center

1 Introduction

In order to monitor the progress of model development, to compare models, and to judge
the validity of a model, methods have to be defined that capture differences in a com-
prehensive way. The meteorological community has a long history of developing methods
to verify weather forecasts. Forecast verification is the process of assessing the quality
of a forecast and a web site exists at the Centre for Australian Weather and Climate
Research (CAWCR) devoted to this subject1. The site contains a comprehensive list of
metrics (methods) to verify dichotomous (yes/no), multi-category, and continuous valued
forecasts. To assess forecasts three types of goodness, in a general sense, can be identified
(Murphy 1993): 1) Consistency, 2) Quality, 3) Value. Consistency is concerned with the
relation between the forecaster’s knowledge base and provided forecast. In weather fore-
casting the forecaster receives input from many sources, like numerical weather models

1http://www.cawcr.gov.au/projects/verification/
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and observations, to provide a forecast. Quality is concerned with the degree of corre-
spondence between forecasts and observations. Value is concerned with the value of the
forecasts to the users. Although quite obvious, but still fundamental, it is clear that a fore-
cast in itself has no value; it is the user who adds value. Cost/loss or cost/benefit analysis
can be used in determining the value of forecasts. Two examples within space weather
are reports produced by two different teams within the ESA Space Weather Programme
Feasibility Studies2. In this work we will primarily address how to assess the degree of
correspondence between forecast model outputs and observations, i.e. the quality of the
forecasts.

2 Verification approaches for models driven by L1

measurements

The prediction lead time from L1 to geomagnetic indices is very short, in terms of sampling
frequency only one or a few samples ahead. As described in D3.1, the L1-magnetopause
travel time provides a lead time of 10 to 80 minutes depending to some degree on space-
craft location but mainly on solar wind speed. When the solar wind disturbance reach
the magnetopause the interaction starts with the development of substorms and storms,
adding about another hour of lead time. The three indices have different time resolu-
tions: Kp 3 hours, Dst 1 hour, and AE 1 minute. Predicting Kp one sample ahead is on
the limit considering the physics involved, while it is possible to predict Dst one or two
samples ahead. For AE some summary measure with reduced temporal resolution will
be predicted, e.g. 10 minutes, but still with higher resolution than Kp and Dst , thus the
number of samples ahead will be higher. If it assumed that real-time observations of the
indices are available then a persistence model, or variants thereof, will receive very high
verification scores for most measures as the storm dynamics is longer that the forecast
lead time.

As the indices work on different time scales and different physical processes are involved
in their determination we will look at the indices individually to understand differences
and commonalities in the verification approaches.

2.1 Dst

The Dst index “is probably the one that monitors and records with the greatest accuracy
the phenomenon for which it was designed” (Mayaud 1980), namely the equatorial ring
current. The Dst index is derived from the horizontal magnetic field from four observa-
tories equally distributed in longitude and 20◦ to 30◦ from the magnetic equator. The
official values are provided with hourly resolution, although it can be calculated with
higher cadence. The index is given in units of nT and can be both positive and negative
with no bounds. Under quiet conditions Dst is close to zero. The typical Dst storm goes
through three phases: the initial phase, the main phase, and the recovery phase.

2http://www.esa-spaceweather.net/spweather/esa initiatives/spweatherstudies/public doc.html
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The initial phase shows an increase in Dst and is caused by a dynamic pressure increase
in the solar wind acting on the magnetopause. The only available lead time is that from
the L1-magnetopause travel time as the magnetospheric response is immediate. The
main phase is basically related to when the solar wind magnetic field component Bz turns
negative, enabling reconnection, driving the magnetospheric storm with an increase of the
equatorial ring current pushing the Dst index to negative values. The magnetospheric
processes provides an additional hour of prediction lead time. The recovery phase sets
in after the storm main phase during which the ring current decays. If there is no new
storm during the decay the possible prediction lead time is several hours to days.

In an extensive model study by Rastätter et al. (2013) 12 different models, using dif-
ferent settings, resulting in 26 different model runs were verified against observed Dst for
4 different storms. Both numerical MHD models and empirical models were compared.
The study showed that the empirical models generally scored highest including the NAR-
MAX model used here (Boynton et al. 2011). Although the study included many models
it should be noted that very few events were included which makes it difficult to come to
a more general conclusion.

In the setup in the current Dst models do not distinguish between the different possible
lead times, but instead always makes an one-hour prediction from solar wind data at the
magnetospheric bow shock location.

The available models have been run on the OMNI dataset extending over the year
1998–2014, i.e. over 17 years consisting of about 149 000 hourly values. The results are
summarised in Table 1 for the 4 models together with observed and persistence Dst

DstPERS(t) = Dst(t− 1). (1)

Naturally, the persistence Dst has the same statistics as observed Dst but is included for
consistency. The models included here are:

• BMR: Burton et al. (1975)

• OM: O’Brien & McPherron (2000)

• LUND: Lundstedt et al. (2001)

• SN 1: Boynton et al. (2011) and web site3.

The models are described in D3.1.
The summary reveals that the mean and median observed Dst are slightly below zero

(−13 and −9 nT, respectively), and that only 1% of the hourly Dst reach below −88 nT.
The models show similar results. The strongest storm reach Dst = −422 nT and only the
SN 1 model comes close to that value. The LUND model only reach -230 nT, while the
BMR model overshoots by a similar amount. The OM model reaches −335 nT. However,
the lowest predicted Dst for each model may not belong to the same storm. We will study
this more in Section 3.1.

3http://www.ssg.group.shef.ac.uk/USSW/UOSSW.html
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Dst LUND SN 1 BMR OM PERS

count 149016 147374 146343 147383 147383 149015
mean -13 -19 -13 -12 4 -13
std 21 17 20 21 26 21
min -422 -230 -437 -650 -335 -422
1% -88 -83 -76 -93 -84 -88
50% -9 -16 -10 -7 10 -9
99% 20 7 18 7 36 20
max 95 31 62 32 48 95

Table 1: Summary statistics of observed and predicted Dst based on the years 1998 to
2014.

We regard Dst as a continuous variable and a few standard measures and skill scores
(Déqué 2012) are suggested in the following. With x as the observed variable and y the
predicted variable the error for sample i is

ei = yi − xi (2)

where positive errors correspond to predicted values above the observed.
The mean bias is defined as

BIAS =
1

n

n∑
i=1

ei (3)

where n is the total number of samples. A model with perfect forecasts has BIAS = 0.
However, a BIAS of zero does not imply perfect forecasts as errors with opposite signs
may cancel.

The mean-absolute-error, the mean-square-error, and the root-mean-square-error are
defined as

MAE =
1

n

n∑
i=1

|ei| (4)

MSE =
1

n

n∑
i=1

e2i (5)

RMSE =

√√√√ 1

n

n∑
i=1

e2i (6)

In all cases a value of zero indicates perfect forecasts. Both MAE and RMSE have the same
units as the observed variable. Both MSE and RMSE are more influenced by forecasts
with large errors compared to MAE.

The linear correlation coefficient is another standard measure

CORR =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
∑

i(yi − ȳ)2
(7)
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with perfect forecasts CORR = 1.
A skill score is used to compare the performance of a model with a reference model.

A standard skill score uses the MSE as the measure and is defined as

MSESS =
MSE−MSEref

MSEperfect −MSEref

= 1− MSE

MSEref

(8)

where MSEref is the MSE from the reference model and MSEperfect is the MSE for a
perfect model. As MSEperfect = 0 that term can be eliminated. A model with MSESS = 1
indicates perfect forecasts, MSESS = 0 forecasts comparable with the reference model,
and MSESS < 0 poorer than the reference model.

The measures and skill score are computed for all models on all data and are sum-
marised in Table 2. The MSE skill score is computed using two different referens models,
the persistence model and the BMR model, respectively. Obviously the persistence model
shows the best result for all measures, however, we also know that the persistence model
can not provide timely forecasts. With that background knowledge we know the limita-
tions of the persistence model, but based only on the measures it is not apparent. The
LUND, SN 1, BMR, and OM models do not use past values of observed Dst as input,
however, any model that does that will likely perform well using the above measures due
to the high autocorrelation in Dst . But of course, if past values of Dst are available in
real time then it is motivated to use it as input, however, high scores need to be checked
so that they are not simply the result of persistence. We now look into different ways of
exploring this.

BIAS MAE RMSE CORR MSESS:PERS MSESS:BMR

LUND -6.69 10.06 12.91 0.85 -7.20 0.24
SN 1 -0.96 8.15 11.35 0.84 -5.34 0.41
BMR 0.46 9.94 14.83 0.74 -9.82 nan
OM 16.74 19.60 23.07 0.78 -25.20 -1.42
PERS -0.00 2.75 4.51 0.98 nan 0.91

Table 2: Measures and scores for observed Dst and predicted Dst using all data.

As Dst is dominated by quiet conditions (see Table 1) it is natural to select a sub-
set with non-quiet data. Selecting only those samples where observed Dst < −50 nT,
about 4% of the data, results in the measures and scores in Table 3. In most cases the
performance measures becomes slightly poorer, but persistence still leads. However, the
MSESS:BMR improves significantly for all models except for the persistence model.

The selection of data to consider can be further refined by considering storm events.
Storms have previously been identified using various criteria and also involving some
manual efforts. See for example event list by Echer et al. (2008) for Dst ≤ −100 nT. Our
approach here is to have an automatic procedure to select storms, with the start times,
end times, and time of minimum Dst (largest negative value). Of course, there will always
be some ambiguity to the definition of storm extent. We apply a lowpass wavelet filter
using the Maximal Overlap Discrete Wavelet Transform (MODWT) (Percival & Walden
2000) to study variations in Dst on typical storm time scales. Some experimenting shows
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BIAS MAE RMSE CORR MSESS:PERS MSESS:BMR

LUND 10.40 19.56 27.86 0.72 -3.79 0.64
SN 1 13.80 20.13 28.18 0.76 -3.90 0.63
BMR 8.26 33.59 46.16 0.73 -12.15 nan
OM 16.44 26.15 33.42 0.72 -5.89 0.48
PERS 1.25 7.59 12.73 0.95 nan 0.92

Table 3: Measures and scores for observed Dst and predicted Dst when observed Dst <
−50 nT.

that filtering at level J = 2, corresponding to lowpass filter of about 8 hours, keeps the
main characteristics of the storms without loosing too much detail. The locations of the
maxima in the filtered series are then used to mark the start and end times for each event.
For a random signal that would produce about n/8 events, where n is the length of the
series. The Dst series results in close to 11 000 events, which is less than the random
limit of 149 000/8 ≈ 19 000. Most events are uninteresting as they merely corresponds to
some random fluctuations. To select an event as a storm event we further require that the
minimum Dst within an event to be less than −50 nT. Through this procedure 507 storm
events are identified and one example is given in Figure 1. We also define the period from
start (first dashed line) to minimum (dotted line) as the main phase, and the period from
minimum to end (second dashed line) as the recovery phase. It should be noted that our
use of “main phase” includes both the original definitions of initial and main phases.

The errors between observed and predicted Dst are summarised in Figure 2 for all
data (upper left), storm data (upper right), main phase (lower left), and recovery phase
(lower right). As before, the persistence model has the smallest errors, with median
errors close to zero for all data and storm data. However, the main phase is dominated by
positive errors and the recovery phase by negative errors, which highlights the fact that
the persistence model is always lagging after the observed Dst .

The LUND model predicts slightly more negative Dst on average, but for storms,
main phases, and recovery phases the median errors are very close to zero, thus implying
timely predictions. The SN 1 model has median errors close to zero when all data are
considered, and slightly positive medians for the other subsets. The BMR and OM models
show positive errors for the storm data, but consistently so also for the main and recovery
phases. This could mean that there is a positive bias in the forecasts and after removal
they would also have medians close to zero for both phases, thus also indicating timely
predictions.

Another way of detecting lags in the predictions is to shift the predictions in time and
compute the errors. In Figure 3 the predictions have been shifted -1, 0, 1, and 2 hours
and the RMSE computed on the main phase data. The minimum RMSE should appear
at the 0 hours shift for timely predictions. The persistence model shows, as expected,
minimum RMSE at a lag of one hour. The LUND and BMR models have minima at zero
lag, while the SN 1 and OM models have minima at 1 hour.

Finally, another test is to estimate the number of storm main phase events that were
timely predicted. There is some ambiguity to define what is meant by timely prediction,
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Figure 1: A storm in 1998 with observed and predicted Dst . Dashed lines mark start and
end of the event, and the dotted line marks observed Dst minimum.

but we consider a prediction to be timely if the RMSE using observed Dst is smaller than
the RMSE on the one hour shifted Dst . For all storm main phases the number of correct
predictions, in terms of timeliness, are counted. The result is summarised in Table 4 where
also the fraction of correct is given. The persistence model is included for completeness,
but naturally with this definition no predictions are correct as seen in the table.

n p

LUND 273 54
SN 1 174 35
BMR 203 40
OM 123 24
PERS 0 0

Table 4: Number (n) and percent (p) of correctly predicted storm main phases. See text
for meaning of correct.

With the above issues in mind when comparing models without and with past values
of Dst as input, where persistence is a special case, we compute the measures and scores
for the storm data, main phase data, and recovery data. The results are shown in Tables 5
to 7. However, the persistence model still scores best.
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Figure 2: Error box plot of predicted Dst vs. observed Dst . For each model the median
error (red horizontal line), the quartiles (box), and the 5 and 95% percentiles (whiskers)
are shown. The errors are computed on all data (top left), storm data (top right), main
phase data (bottom left), and recovery phase data (bottom right).
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Figure 3: RMS errors of the predictions compared to observed Dst shifted by -1, 0, 1, and
2 hours.
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BIAS MAE RMSE CORR MSESS:PERS MSESS:BMR

LUND 1.92 14.56 21.48 0.83 -2.94 0.58
SN 1 4.67 14.80 22.02 0.83 -3.14 0.56
BMR 5.15 22.48 33.32 0.79 -8.48 nan
OM 10.92 20.30 26.40 0.81 -4.95 0.37
PERS 0.77 6.62 10.82 0.96 nan 0.89

Table 5: Measures and scores for observed Dst and predicted Dst for storm events.

BIAS MAE RMSE CORR MSESS:PERS MSESS:BMR

LUND 0.37 13.65 19.72 0.88 -1.08 0.54
SN 1 5.62 15.38 22.56 0.85 -1.72 0.40
BMR 3.69 19.71 29.12 0.83 -3.53 nan
OM 13.08 19.86 25.68 0.85 -2.52 0.22
PERS 5.84 8.38 13.68 0.96 nan 0.78

Table 6: Measures and scores for observed Dst and predicted Dst for storm main phases.

BIAS MAE RMSE CORR MSESS:PERS MSESS:BMR

LUND 4.18 15.65 23.34 0.79 -7.86 0.60
SN 1 5.01 14.95 22.34 0.81 -7.12 0.64
BMR 6.63 25.19 36.98 0.76 -21.24 nan
OM 9.99 21.15 27.66 0.76 -11.44 0.44
PERS -2.83 5.34 7.84 0.98 nan 0.96

Table 7: Measures and scores for observed Dst and predicted Dst for storm recovery
phases.
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2.2 Kp

The global range index Kp (Mayaud 1980) is a weighted summary of local K indices
derived from 13 mainly northern mid-latitude magnetic observatories. The K index mea-
sures semi-logarithmic the range of variation of the local horizontal magnetic field over
a 3-hour interval, with each interval fixed in UT windows 00-03, 03-06, ..., 21-24. Thus,
different physical processes with different temporal dynamics and from different domains
are merged into one variable although it is mainly controlled by the main geomagnetic
storm. This means that within the 3-hour Kp interval there will be variations in the
horizontal magnetic field with different time lags following the solar wind disturbance,
although for the larger Kp values the lag will be about an hour or longer.

The Kp index is discrete and can only be one of the 28 values

Kp ∈ {00, 0+, 1−, 10, 1+, . . . , 80, 8+, 9−, 90} (9)

where the range of variability increases for increasing Kp, as shown in Table 8. The Kp
values have been translated into ap according to Mayaud (1980), where ap is in units of
2 nT. Thus, the resolution is higher below 100 nT than above, and the scale has an upper
limit.

g = ap nT
Kp

0 0 0
1 4 8
2 7 14
3 15 30
4 27 54
5 48 96
6 80 160
7 132 264
8 207 414
9 400 800

Table 8: Relation between Kp and range ap in units of 2 nT and nT.

The analysis for Kp is performed in a similar way as for Dst . The models, described
in D3.1, are:

• LUND NC: Nowcast of current Kp (Boberg et al. 2000)

• LUND FC: Forecast of next Kp (Boberg et al. 2000)

The models are driven by solar wind data. The nowcast model predicts the Kp value
valid for the latest 3-hour interval, while the forecast model predicts Kp value valid for
the coming 3-hour interval.

The results are summarised in Table 9 for 2 different Kp models together with per-
sistence. Kp is dominated by small values with observed median of 2− (1.7) and similar
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Kp LUND NC LUND FC PERS

count 49672 48866 48865 49671
mean 1.8 2.3 2.4 1.8
std 1.4 1.0 0.9 1.4
min 0.0 0.0 0.1 0.0
1% 0.0 0.5 1.0 0.0
50% 1.7 2.1 2.2 1.7
99% 6.0 5.2 4.9 6.0
max 9.0 9.0 9.0 9.0

Table 9: Summary statistics of observed and predicted Kp based on the years 1998 to
2014.

model medians. The 99% percentile is at Kp = 60 and with slightly lower model values.
The models also reach the highest values of Kp = 90.

The scatter plot shows that the models tend to predict higher values than observed
for Kp . 3. However, from Table 8 it is seen that those values correspond to variations
less than 30 nT. For the nowcast model there is a tendency for slight under-prediction in
the mid Kp range, but it improves for the highest values. The forecast model performs
slightly poorer.

The measures and skill scores based on all data are shown in Table 10. In this case,
compared to Dst , the persistence model has only marginally better scores due to the
weaker autocorrelation in the Kp series. But, still, based only on these scores the persis-
tence model would be the winner.

BIAS MAE RMSE CORR MSESS:PERS

LUND NC 0.43 0.72 0.87 0.84 -0.05
LUND FC 0.54 0.88 1.04 0.78 -0.50
PERS -0.00 0.63 0.85 0.81 nan

Table 10: Measures and scores for observed Kp and predicted Kp using all data.

The temporal evolution of Kp is different from Dst and we choose not to identify in-
dividual storms for the continued analysis, but instead simply look at events when there
is increase or decrease in activity. Now both models perform better than the persis-
tence model (Table 11). In the case of decreasing Kp the persistence model scores best
(Table 12).

The error box plots for the three different datasets are shown in Figure 5. Similar to
the Dst analysis the persistence errors are distributed around zero for the full dataset (top
panel), and negatively and positively distributed for the increasing and decreasing sets,
respectively. The models show positively distributed errors for the full set due to that the
majority of Kp values are low and that the models over-predict low values. However, for
the increasing events the errors are distributed around zero.

The timeliness plot of the Kp predictions (Figure 6) shows a minimum in RMSE at no
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Figure 4: Scatter plot of predicted Kp vs. observed Kp.

BIAS MAE RMSE CORR MSESS:PERS

LUND NC 0.06 0.58 0.73 0.88 0.44
LUND FC -0.02 0.69 0.89 0.79 0.18
PERS -0.80 0.80 0.98 0.91 nan

Table 11: Measures and scores for observed Kp and predicted Kp using only data when
Kp increses.

BIAS MAE RMSE CORR MSESS:PERS

LUND NC 0.67 0.83 0.98 0.78 -0.27
LUND FC 0.95 1.04 1.19 0.81 -0.86
PERS 0.72 0.72 0.87 0.92 nan

Table 12: Measures and scores for observed Kp and predicted Kp using only data when
Kp decreases.
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Figure 5: Error box plot of predicted Kp vs. observed Kp. For each model the median
error (red horizontal line), the quartiles (box), and the 5 and 95% percentiles (whiskers)
are shown. The errors are computed on all data (top), increasing events (middle), and
decreasing events (bottom).
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shift for the nowcast model, while the forecast model shows a minimum at 3 hours shift,
indicating some lag in the predictions.
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Figure 6: RMS errors of the predictions compared to observed Kp shifted by -3, 0, 3, and
6 hours.

The number and fraction of correctly predicted Kp increase events are summarised in
Table 13. See section on Dst for the definition of correct. The fraction correct is high,
above 70%, which means that most of the events have smallest RMS errors at the correct
time.

n p

LUND NC 10554 78.731816
LUND FC 9886 73.748601
PERS 0 0.000000

Table 13: Number (n) and percent (p) of correctly predicted Kp increase events. See
text for meaning of correct.

2.3 AE

Currently, we do not have any operational AE prediction models, therefore we have not
carried out any tests. However, the same strategies that we have outlined for Kp and Dst
will be useful for the verification of the coming AE prediction models.

3 Verification approaches for models driven by L1

predictions

The models developed in WP 2 will provide forecast of solar wind plasma and magnetic
field vector at L1 for ambient solar wind and high speed streams from coronal holes with
a temporal resolution of 1 hour. This will provide a prediction lead time of several days.
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However, the resolution and accuracy at L1 will not be as high as the measurements
provided by ACE and DSCOVR spacecraft.

The verification of the models predicting indices from L1 using predicted solar wind
data as input is different from the verification when using measured solar wind data.
Models relying on solar wind L1 measurements can only make predictions with 1–2 hours
lead time and therefore the timeliness is important. Those models may also used past val-
ues of the geomagnetic index as inputs when they are available in real time. Performance
measures of index-prediction models that are driven by the predicted solar wind are not
affected by persistence as the autocorrelation is small past a few hours lag. However,
there is some recurrence in geomagnetic activity due to the persistence of coronal holes.
An example with recurrent high-speed streams from coronal holes is shown in Figure 7.
There is also an CME causing the highest Kp of about 8 and Dst ≈ −150 nT.

The ≈ 13.5 days recurrence is most clearly visible in the solar wind velocity and Kp,
and somewhat less visible inDst due to their linear scales and that coronal holes do not
produce as strong geomagnetic activity as CMEs do. For example, the strongest Dst
storms caused by corotating interaction regions (CIR) reach about -150 nT (Echer et al.
2008, Ji et al. 2012).

3.1 Dst

As the prediction lead time is comparable to the duration of individual storms it is inter-
esting to study event based metrics, similar to that of Ji et al. (2012) where they identified
63 storms in Dst and related them to different types of solar wind drivers. In addition to
the linear correlation (CORR) and RMS error, they also studied the difference between
observed and predicted Dst minima ∆Dstmin, and the difference in the times of the ob-
served and predicted minima ∆tmin. However, the time of minimum is not always a well
defined quantity. There may be several Dst values close to the minimum but spread out
over several hours. Figure 8 shows the differences in Dst and timings of the two lowest
Dst values for each event in the Echer et al. (2008) storms list. In some cases the two
lowest Dst are well separated in magnitude indicating a clear minimum, while many more
events have differences less than 10 nT (top panel). Simultaneously, several of the minima
with small differences in magnitude have large differences in timings (bottom panel).

Figure 9 shows one of the events with ambiguous time of minimum. The storm event
duration used by Ji et al. (2012) is showed with the red bar. The automatic wavelet
method classifies this as two events illustrated with green and blue bars.

The measures applied in Section 2.1 can also be applied here but now on an event-
by-event basis. In addition the error between the observed and predicted minimum Dst
is calculated. The measures for all storms with Dst < −50 nT were given in Table 3 and
the errors for storm events in Figure 2 (top right).

Figure 10 shows the predicted vs. observed minima Dst for all events. Above −200 nT
the predictions line up quite well with some scatter around the observed Dst . The six
strongest storms are marked with blue vertical lines. It is seen that the predicted Dst
have a quite large spread. The LUND model saturates at approximate -230 nT. The BMR
model often strongly overestimates the Dst magnitudes for the larger storms. The SN 1
model shows quite a large variability from observed Dst . −200 nT, although for some
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Figure 7: The figure shows from top to bottom: computed source surface magnetic field
from Wilcox Solar Observatory, solar wind velocity, solar wind Bz, observed and nowcast
Kp, and observed and forecast Dst . The vertical black lines are separated by 13.5 days.
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Figure 8: Top: The figure shows the difference between lowest and second-lowest Dst
values for each event in the list by Echer et al. (2008). Bottom: The difference in hours
between the times of the two lowest Dst values.
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Figure 9: One event illustrating the ambiguity of the time of the Dst minimum. Vertical
lines show the times of the lowest (solid), second lowest (dashed), and third lowest (dotted)
Dst values. Coloured bars show extension of events. See text for description.
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of the larger events it comes closest. The OM model generally underestimates the large
events but with a small variability. Events 310 and 181 have datagaps in the solar wind
data and therefore the predictions are wrong with Dst clustered around similar values.
Both events are associated with proton events (Oct 30, 2003 and Nov 6, 2001) temporarily
knocking out the ACE plasma instrument. The other events have solar wind data and
the two strongest are shown in Figure 11 together with the predictions.
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Figure 10: Scatter plot of predicted Dst vs. observed Dst .

The errors between observed and predicted Dst minima for each event are shown in
Figure 12. The left plot highlights the errors that are distributed between the 5 and 95
percentiles, while the right plot also shows the largest individual event errors. Events 181
and 310 are excluded due to the lacking solar wind data. The LUND and SN 1 models
have very similar ranges for the percentiles, both smaller than for the BMR and OM
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Figure 11: Observed and predicted Dst for the two strongest events.



Project: PROGRESS
Deliverable: 3.3

Doc No: PROGRESS 3.3
Page: 23 of 28

models. The RMSE for all events are: LUND, 32 nT; SN 1, 37 nT; BMR, 46 nT; OM,
37 nT.
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Figure 12: The errors between observed and predicted minima Dst for each event. Right
plot shows top 10% largest errors as individual points. Events 181 and 310 have been
excluded as solar wind data are missing.

3.2 Kp

The same measures used in Section 2.2 can be used here. We also add the event based
verification by looking at the maxima Kp for individual events. Similar to that applied
to Dst we do a wavelet filtering to find minima in the Kp series, where the times of
minima mark event boundaries. After some experimenting a filter at level 4 was used,
corresponding to a lowpass filter of 3 · 24+1 = 96 hours = 4 days. An example with
identified minima is shown in Figure 13. With this approach we identify 1076 events with
maximum Kp distributed according to Table 14.

n
Kp

0 1
1 7
2 80
3 206
4 323
5 249
6 122
7 51
8 27
9 10

Table 14: The number (n) events with maximum Kp from 0 to 9.
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Figure 13: Example of identified times of minima (vertical lines) for filtered Kp (red
curve).
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For each event the maximum observed and predicted Kp are shown in Figure 14 for
the LUND model and a simple 27-day recurrence relation. The predicted Kp maxima
follows the observed well over the complete Kp range. There are three outliers (encircled)
for large Kp where two of them are due to solar wind datagaps. The third might be due
to that the solar wind Bz component turned strongly negative but only for a very short
time.
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Figure 14: Scatter plot of the observed and predicted maxima Kp for each event.

The error box plots are shown in Figure 15 for the LUND model and the 13- and
27-day recurrence relations for comparison. The 5 and 95 percentile marks show that
90% of the predictions are within ±1 units from observed Kp. All predictions are within
±2 units from observed when the three events mentioned above are excluded.
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Figure 15: Box plot of errors between observed Kp maxima and predicted Kp maxima.
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4 Conclusions

We have applied standard verification measures and visualisations to predicted Dst and
Kp. We suggest that the verification approach should be slightly different for models
driven by solar wind measurements compared to models driven by predicted solar wind
data. In the first case, timeliness is very important as the prediction lead time is very
short. We therefore compute the measures on different phases of the storms. For Dst we
used a wavelet filter to automatically determine storm onset and duration, while for Kp
we simply looked at Kp increases and decreases. As most measures will give good scores
for persistence models for the short lead time forecasts it is important to detect it when
comparing measures and trying to rank models.

When the solar wind-index models are driven by predicted solar wind it is more inter-
esting to study the performance on an event basis. The same measures can be applied but
now persistence is not applicable. The event selection algorithm for Dst is also used and
the algorithm is also applied to Kp. In addition to the mentioned measures the minimum
Dst and maximim Kp for each event is analysed.

As the models verified here are computationally very lightweight it is possible to run
the models for very long sequences, in this work for all data since 1998. Both the Dst-
LUND (IRF-Lund) and the Dst-SN 1 (Univ. Sheffield) Dst models perform similarly with
the largest differences for the larger events. The Dst-LUND model saturates at -230 nT.
It should be noted that the model was develop on data from before 2001 and has not
been changed since then. During that period there are very few Dst events below -250 nT
with simultaneous solar wind data which may explain why it saturates at -230 nT. The
Dst-SN 1 model shows a bigger range of variability for the larger events, some predictions
come close to the observed while other both underestimates and overestimates. However,
having a set of models that perform similarly it is quite difficult to determine a best
model, it instead becomes a “beauty competition” (Déqué 2012).

Currently we only have verified the Lund-Kp model, but the Sheffield Kp model will
be included in the analysis in the future. The Lund-Kp models are implemented both
for nowcast (NC) and 3-hour forecast (FC). However, from physical considerations it is
difficult to imagine how a three-hour forecast would be possible, and this also partly
shows up in the analysis. From the event based analysis it is seen that the LUND model
captures the full range of Kp maxima.

The verification approach described here will be implemented on the future model
development within this project. We expect that there will be some improvements in
the future Dst and Kp models, and this improvement can be checked against current
models using the approaches described here. Also the future AE models will be analysed
similarly.
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