
Project: PROGRESS
Deliverable: 2.3

Doc No: PROGRESS 2.3
Page: 1 of 33

PRediction Of Geospace Radiation
Environment and Solar wind

parameterS

Work Package 2
Propagation of the Solar Wind from the

Sun to L1

Deliverable 2.3

Full user and developer documentation

T. Arber, K. Bennett

December, 2017

This project has received funding from the European Unions Horizon 2020 research and

innovation programme under grant agreement No 637302.

Ref. Ares(2018)4897534 - 24/09/2018

Project: PROGRESS
Deliverable: 2.3

Doc No: PROGRESS 2.3
Page: 2 of 33

Document Change Record

Issue Date Author Details
1.0 9 August, 2017 T. Arber Setup sections headings
1.1 17 December, 2017 T. Arber Equations and code structure
1.2 20 December, 2017 K. Bennett Code setup
1.3 20 December, 2017 T. Arber Final version
1.4 10 September, 2018 T. Arber Corrected final version

Contents

1 Downloading and setup of the coupled codes 4

1.1 Building the Code . 5

2 Steady state solution based on Carrington rotation GONG data 7

3 Daily updated AWSoM steady state plus time-accurate SWIFT 8

4 Visualisation tools 10

5 System requirements 14

6 Equations solved and numerical implementation 15

6.1 Core Equations . 15

6.2 Edge viscosity . 16

6.3 Thermal conduction . 17

6.4 Centrifugal and geometry terms . 18

7 Grid definitions 19

Project: PROGRESS
Deliverable: 2.3

Doc No: PROGRESS 2.3
Page: 3 of 33

8 Appendix 21

8.1 The build.sh script . 21

8.2 The setup.sh script . 23

8.3 The autosubmit predictive.sh script . 26

Project: PROGRESS
Deliverable: 2.3

Doc No: PROGRESS 2.3
Page: 4 of 33

Summary

Space weather forecasts require reliable knowledge of the MHD variable at L1 and this

is required before they are measured there in situ. The AWSoM code developed at the

University of Michigan will take magnetogram observations and use these to drive MHD

simulations, time-accurate, out to around 30 solar radii. These coronal simulations can

then be used to drive a fast, spherical geometry inner-heliospheric MHD code (SWIFT)

to give predictions at L1. This report is the documentation needed to download, install,

compile and run the coupled AWSoM-SWIFT toolchain and then visualise the results at

L1.

1 Downloading and setup of the coupled codes

The download, build and setup of the codes used for generating predictions at L1 based

on GONG magnetogram data is outlined in the next few sections. The minimum system

requirements are listed in Section 5.

The first part of this simulation is carried out using the AWSoM model which is part of

the SWMF suite of codes distributed by CSEM at the University of Michigan. The code is

freely available after registering for access at the following URL: http://csem.engin.umich.

edu/tools/swmf/downloads.php

Once registered, you will be able to download a tarball of the code which will be

named according to the date of release, e.g. SWMF 20170626.tgz. This can be unpacked

into a directory named SWMF 20170626 using the command

> tar xzf SWMF 20170626.tgz

The second part of the simulation is performed using SWIFT, a 3D spherical-geometry

Lagrangian remap code developed and maintained at Warwick University. This code

is hosted at Warwick using a GitLab server (an open-source version of GitHub). To

obtain the code you must first register for an account at the following URL: https:

//cfsa-pmw.warwick.ac.uk/.

Project: PROGRESS
Deliverable: 2.3

Doc No: PROGRESS 2.3
Page: 5 of 33

After logging in for the first time, you must next request access to the project by nav-

igating to the URL: https://cfsa-pmw.warwick.ac.uk/SWIFT and clicking on the “Request

Access” button.

Once registered on the project, the code can be obtained from the git repository using

the following command:

> git clone --recursive https://cfsa-pmw.warwick.ac.uk/SWIFT/SWIFT

Finally, you will need a small tool for generating the satellite trajectory files. This is

also hosted on the gitlab repository and can be obtained using the following command:

> git clone https://cfsa-pmw.warwick.ac.uk/SWIFT/SPICE

For the sake of simplicity, the scripts and examples presented in the remaining sec-

tions assume that the two git repositories and the unpacked SWMF tarball all reside

in the same directory. We will assume that you start in the top level of this directory

heirarchy, so typing the command “ls” will return the entries “SPICE”, “SWIFT” and

“SWMIF 20170626”.

1.1 Building the Code

There are several configuration files and data files that are needed for running the coupled

AWSoM/SWIFT simulations. For convenience, a set of example files are supplied with

the SWIFT git repository. To access these, switch to the SWIFT directory (cd SWIFT)

and type

> git checkout -b swmf run origin/swmf run

This will switch to a branch of the repository which contains a directory named SWMF FILES

containing the sample files. This directory also contains a few shell scripts which will carry

out the job of configuring the codes, building and setting up the data files required for

running a simulation on a typical Linux machine. In order to build the codes, just type

> ./SWMF FILES/build.sh

The full contents of the build script is supplied in Section 8.1 but we will now outline

the basic steps involved. To build SWMF you must first specify the compiler to use,

Project: PROGRESS
Deliverable: 2.3

Doc No: PROGRESS 2.3
Page: 6 of 33

followed by configuring the components and finally use the resulting Makefile to compile

the code. There are many possible options available and more details can be found in the

accompanying documentation. Begin by switching to the directory that was created when

you unpacked the SWMF tarball (eg. cd SWMF 20170626). After that, the following set

of commands will build the code for the gfortran compiler.

> ./Config.pl -install -compiler=gfortran

> ./Config.pl -v=Empty,SC/BATSRUS,IH/BATSRUS

> ./Config.pl -o=SC:u=ScChromo,e=MhdWavesPe

> ./Config.pl -o=IH:u=ScChromo,e=MhdWavesPe

> ./Config.pl -g=SC:4,8,4,2000,1,IH:4,4,4,4500,1

> make SWMF

In order to convert GONG magnetograms into the harmonics data required for driving

AWSoM, an additional “HARMONICS.exe” utility is required which is built as follows:

> cd util/DATAREAD/srcMagnetogram

> make HARMONICS

> cd -

The remaining programs to be built are SWIFT and SPICE. These are both fairly

simple and just use the standard UNIX “make” command. The commands to build

SWIFT, along with the Python module required for reading its output are:

> cd ../SWIFT

> make

> make sdfutils

Finally, to build the SPICE utility the commands are:

> cd ../SPICE

> make

> cd ..

Project: PROGRESS
Deliverable: 2.3

Doc No: PROGRESS 2.3
Page: 7 of 33

2 Steady state solution based on Carrington rotation

GONG data

To run “SWMF” and generate a steady-state result based on a single full Carrington

rotation magnetogram, you can use a script provided for setting up all the required data

files:

> ./SWMF FILES/setup.sh

By default, this sets up everything required for simulating Carrington rotation number

2098. This number can be changed by using the “-c” flag and specifying the desired Car-

rington rotation number. For example, to run the steady-state simulation for Carrington

rotation 2190 you would issue the following command:

> ./SWMF FILES/setup.sh -c 2190 The full contents of the setup script is sup-

plied in Section 8.2

After this you will have a directory named run CR2098 in the “SWMF 20170626”

directory in which to carry out the simulation (the number following “CR” will change

according to the Carrington rotation requested). The directory contains a file named

PARAM.in which sets the parameters for the run. Note that it also relies on the data files

“harmonics.dat” (generated using a GONG magnetogram) and “earth traj.dat” contain-

ing the Earth’s trajectory over the given time period. Both of these will need changing if

the date of the simulation period is changed.

To run the simulation, change to the “SWMF/run” directory and either run the

“SWMF.exe” executable using “mpirun” or submitting the job to the scheduling sys-

tem if running on a cluster. For example, if running on a 36 core local machine, you

would type the following command:

> mpirun -np 36 ./SWMF.exe

A SLURM job submission script is provided for the University of Warwick cluster. It

can be scheduled using the following command:

> sbatch job.slurm

Project: PROGRESS
Deliverable: 2.3

Doc No: PROGRESS 2.3
Page: 8 of 33

Once the simulation is complete it should produce output in the “IH/IO2” and “SC/IO2”

directories. It also produces a couple of buffer files that are required for driving the

“SWIFT” simulation. For the example script, these are the files “R=18Rs 2017 04 29 15 08 00.out”

and “R=22Rs 2017 04 29 15 08 00.out”. For a different Carrington rotation these files

will have different date strings.

To run the “SWIFT” simulation, you must copy these files and the “earth traj.dat” file

into the “SWIFT/Data” directory. You also need to generate a simple text file containing

a list of these files. There is a script for accomplishing this task. The commands to run

are:

> cp earth_traj.dat R*Rs*out ../../SWIFT/Data/

> cd ../../SWIFT

> ./scripts/gen_buffer_list.sh

The code can then be run using the command

> mpirun -np 36 ./bin/swift

3 Daily updated AWSoM steady state plus time-accurate

SWIFT

The model coupling AWSoM with SWIFT to generate a prediction at the L1 point using

GONG magnetogram data is run on a daily basis at Warwick University. The full sim-

ulation is fully automated using the script “autosubmit predictive.sh” which is provided

for reference in the Appendix, Section 8.3. The procedure followed is outlined here.

A new GONG magnetogram is downloaded from the URL https://gong.nso.edu/data/

magmap/QR/bqs. Currently, the data file is chosen to be the one closest to noon on the

current day although the exact time varies. The file is usually available between 14:00

and 16:00 of the same day and it is polled for periodically to ensure that the processing

is performed as quickly as possible. Once the magnetogram has been retrieved, it is used

to generate a harmonics file and the resulting data used to drive an AWSoM steady-state

Project: PROGRESS
Deliverable: 2.3

Doc No: PROGRESS 2.3
Page: 9 of 33

simulation. The AWSoM run typically requires roughly 14 hours to complete. At the end

of this simulation, a buffer file is produced which can be used as a boundary condition

for driving the SWIFT simulation.

The next stage is to run the SWIFT code as a time-accurate simulation using the

buffers generated by AWSoM. SWIFT is first restarted using a restart dump from the

previous day’s run. This restart corresponds to the simulation time for the previous day’s

AWSoM buffer. It reads that buffer in addition to the newly generated one from today’s

magnetogram and drives the SWIFT simulation forwards a day by interpolation between

the two sets of buffer values to generate intermediate times. Once the simulation reaches

the time corresponding to the current day’s AWSoM buffer, it generates a restart dump

to use for starting the next day’s simulation and then continues running for a further

4 days keeping the boundary values fixed. Throughout this simulation, various physical

quantities are sampled at the L1 Lagrange point to be used for predictions. These are

written into a self-describing binary file format.

At the end of the simulation, a script extracts the time-history information from

the binary output and writes it to a JSON file which is uploaded to a web page. This

process is carried out automatically. An archive of all predictive data can be found at

the URL https://warwick.ac.uk/fac/sci/physics/research/cfsa/people/bennett/swift-data.

Both the AWSoM code and SWIFT run in the Heliographic coordinate system (HGC)

which rotates with the Sun. Since it is most convenient for other members of the team

to work in Geocentric Solar Magnetic coordinates (GSM), the data is automatically con-

verted to this form before being uploaded.

All data generated by the coupled codes and uploaded to the previously mentioned

web archive have been carried out using fixed versions of the code and parameter files.

For SWMF, the version used is the 2017-06-26 tarball which corresponds with version

9.20 of the BATS-R-US code and version 2.40 of the SWMF CON library. All SWIFT

runs are carried out using version 1.0 of the code. The parameter files used are con-

Project: PROGRESS
Deliverable: 2.3

Doc No: PROGRESS 2.3
Page: 10 of 33

tained in the “SWMF FILES” subdirectory of the SWIFT git repository. These are

SWMF FILES/PARAM.in.awsomr for the SWMF code and SWMF FILES/input.txt for

the SWIFT code. The code versions are written as part of the metadata in the JSON

files. If either model is updated in future work then these will be archived to a separate

web page and the version change clearly documented.

4 Visualisation tools

The SWIFT git repository comes with several tools for visualising the output generated by

the AWSoM and SWIFT codes. These are python utilities that make use of the matplotlib

library for generating figures and can be found in the “scripts” subdirectory of the SWIFT

repository. The most commonly used utility is that for producing time-history plots for

the data sampled at the L1 point. Typical usage is as follows:

> ./scripts/time_history.py -C \

SWMF_FILES/sat_earth_traj_n000000.sat Data/timehistory.sdf

This plots a time-history of SWIFT data at L1 and compares it with an SWMF simulation

and the OMNI data over the same time period. Supplying the “-C” flag will restrict the

date range of the plot to just those dates for nearest Carrington rotation number. The

results of this plotting command is shown in Figure 1 for Carrington rotation 2098. It is

possible to pass any number of data files as input to this script. For example, passing only

the SWIFT data file will produce the same plot with the SWMF comparison omitted.

Full help on all the available options can be found by passing the “-h” flag.

Since SWIFT is a 3D code, the time-histories from a single point are often insufficient

for understanding how the system is behaving as a whole. To help visualise the full 3D

model, a script is provided that can produce movies of a 2D slice through the simulation

in either the ecliptic plane or the plane perpendicular to the ecliptic and Sun-Earth line.

An example use of this script is as follows:

> ./scripts/sdf_movie.py -f Data/0000.sdf Velocity_Vr_xy

Project: PROGRESS
Deliverable: 2.3

Doc No: PROGRESS 2.3
Page: 11 of 33

200

400

600

800

U r
(k

m
/s

)
OMNI
AWSoM
SWIFT

0

10

20

30

40

N p
(c

m
3)

0
1 × 105

2 × 105

3 × 105

4 × 105
5 × 105

Te
m

pe
ra

tu
re

(K
)

18-Jun
21-Jun

24-Jun
27-Jun

30-Jun
03-Jul

06-Jul
09-Jul

12-Jul

Start time 2010-06-16 04:52 (CR 2098)

0.0

2.5

5.0

7.5

10.0

B
(n

T)

Figure 1: Time history

This will generate a movie of the radial velocity component in the ecliptic plane plotted

over the runtime of the simulation. An example frame from this movie is shown in

Figure 2. A complete list of variable available for plotting is generated by passing the

“-l” flag to the script. Full help on the available options can be found by passing the “-h”

flag.

Since the results of the SWIFT simulation are entirely determined by the driver values

used from the AWSoM model, it is often useful to be able to plot the contents of the buffer

files. SWIFT comes supplied with a script for reading and plotting the contents of these

files. It is invoked as follows:

> ./scripts/read_buffer.py -pc \

Project: PROGRESS
Deliverable: 2.3

Doc No: PROGRESS 2.3
Page: 12 of 33

Figure 2: An example movie frame for radial velocity

./SWMF_FILES/R=22Rs_2010_06_16_04_52_00.out

Here, the “-p” flag specifies that a plot should be generated and the “-c” flag is used to

only plot the Cartesian components of the velocity and magnetic field vectors. The plot

generated by this command is presented in Figure 3.

In addition to the python utilites described above, SWIFT also comes with several

libraries for reading the data into general purpose visualisation tools. All of the scripts

supplied make use of the Python matplotlib library and an SDF python module for

loading the data files. The SDF module is built and installed as part of the SWIFT build

procedure described above. Loading data from within a Python interpreter can be carried

out as follows:

>>> import sdf_helper as sh

>>> vars = sh.getdata(’Data/0000.sdf’)

Project: PROGRESS
Deliverable: 2.3

Doc No: PROGRESS 2.3
Page: 13 of 33

Figure 3: Buffer values at 22.5 R� produced by AWSoM

>>> sh.list_variables(vars)

The “vars” variable will then contain a data structure containing metadata for all of the

variables contained in the SDF file. The “list variables” function call will list all of the

variables along with their types and dimensions. Each variable has a “data” member

which will contain a NumPy array holding that variable’s data values. Note that this is

implemented using a callback mechanism so that the data is only read from the file when

it is first used. Each variable also has a “grid” member which references the grid on which

that variable is defined.

The SDF subdirectory of the SWIFT repository also comes with reader plugins for

Project: PROGRESS
Deliverable: 2.3

Doc No: PROGRESS 2.3
Page: 14 of 33

MatLab, IDL and VisIt.

5 System requirements

All of the codes involved in the coupled simulation assume the use of a UNIX based

operating system. Most things should work on MacOS although not everything has been

fully tested on such a setup. Since most large parallel machines are based on Linux, we

will restrict ourselves to listing the packages required for running on a standard Ubuntu

installation.

Downloading the Warwick git repositories which contain the “SWIFT” and “SPICE”

codes requires the “git” command-line utility to be installed on your system. For Ubuntu,

this just requires the “git” package to be installed.

There are several dependencies that are required in order for the build process to be

carried out successfully. In particular, it is necessary to have a working Fortran compiler

and MPI library. It is also necessary to have Python and Perl installed. For a basic

Ubuntu installation, the following packages must be installed: curl, make, g++, gfortran,

libopenmpi-dev, perl, python, libpython-dev, python-pip.

For running the code and analysing the output, it is also necessary to have the follow-

ing packages: python-astropy, python-matplotlib. Finally, there are a couple of python

modules that do not come as a standard package in Ubuntu. The preferred method of

obtaining these is via the “pip” python package manager. The first of these modules is

“ai.cdas” which is necessary for downloading the OMNI data used in generating compar-

ison plots. This can easily be added by the user with the command

> pip install --user ai.cdas

The second library that is needed is the “spiceypy” module which provides a python

interface to the SPICE coordinate system library. This is used when transforming the

data from HGC coordinates to GSM coordinates. The library can be installed using the

following command:

Project: PROGRESS
Deliverable: 2.3

Doc No: PROGRESS 2.3
Page: 15 of 33

> pip install --user --no-binary spiceypy spiceypy

6 Equations solved and numerical implementation

6.1 Core Equations

The core method in SWIFT is based around that for the Lare2d documented in Reference

[1]. This reference describes the core algorithm for a Cartesian grid. In this report we

summarise the basic equations solved and how the SWIFT implementation differs from

that of Lare2d.

The equations solved in SWIFT, in S.I. units, are the standard ideal-MHD equations

modified for two-temperature, shock viscosity and thermal conduction.

∂ρ

∂t
= −∇ · (ρv) (1)

Dv

Dt
=

1

ρ
j×B− 1

ρ
∇(Pe + Pi) + Fshock − ρg (2)

∂B

∂t
= −∇× E (3)

Dεi
Dt

= −Pi
ρ
∇ · v +Qshock (4)

Dεe
Dt

= −Pe
ρ
∇ · v −∇.q (5)

E + v ×B = 0.0 (6)

∇×B = µ0j (7)

Where D/Dt is the advective derivative, ρ is the total mass density, v is the centre-of-

mass fluid velocity, B,E are the magnetic and electric field in MHD, j is the current density

g is the acceleration due to gravity and εe and εi are the electron and ion specific internal

energy desities. The non-ideal MHD terms Fshock and Qshock are the shock viscosity and

its associated ion heating, described below, and thermal conduction for the electrons ∇.q,

where q is the electron heat flux.

Definitions useful for converting between ε and the more familiar pressure and tem-

Project: PROGRESS
Deliverable: 2.3

Doc No: PROGRESS 2.3
Page: 16 of 33

Figure 4: Labels used for edge viscosity.

perature are

P =
ρkBT

µm

ε =
P

ρ(γ − 1)
=

kBT

µm(γ − 1)

where µm is the reduced mass, i.e. the average mass of all particles in the plasma. Hence

µm = mp for neutral hydrogen atoms (mp is the proton mass) and µm = 0.5mp for fully

ionised hydrogen.

6.2 Edge viscosity

The shock viscosity in SWIFT is based on the edge viscosity formulation in Reference [3].

This is presented first for Euler’s equation only and MHD added later. First find the area

weighted nodal density and sound speed ρv and csv. Then for each edge of the cell find

csi = min(csiv, cv
i+1
v) where i labels the nodes of the cell as in Figure 4 and is cyclic so for

i = 1, i− 1 = 4 etc.

Next define the edge density through ρi = 2ρivρ
i+1
v /(ρiv + ρi+1

v). Then on edge i the

associated viscous force is

fi = ρi{c̄2∆vi + (c̄22∆v
2
i + c21cs

2
i)

1/2}(1− ψi)(∆v̂i.Si)∆vi (8)

with c̄2 = c2(γ + 1)/4 and usually c1 = c2 = 1. The velocity difference is ∆vi = vi − vi+1

and the edge force is only applied if ∆v̂i.Si < 0, i.e. cell edge compression. In these

Project: PROGRESS
Deliverable: 2.3

Doc No: PROGRESS 2.3
Page: 17 of 33

expressions the median mesh vector Si is normal to the median mesh, points anti-clockwise

and has magnitude of the distance from the centre of the cell to the edge i. This viscous

force is applied to node i and −fi is applied to cell i+1. Thus the viscous force applied to

node 1, due to the edge viscosity, is fvisc1 = f1 − f4 from this cell. There will be 4 similar

contributions to the total viscous force on this node from srounding cells. The compatible

heating in the cell due to shock viscosity on its edges is

ρ
Dεi
Dt

= − 1

Cv

4∑
i=1

fi.∆vi = ρQshock (9)

The function ψi acts as a limiter to turn off viscosity in smooth regions of flow. It is

defined through

ψi = max

{
0,min

(
rLi + rri

2
, 2rLi, 2rri

)}
(10)

with

rLi =
∆va.∆v̂i
∆xa.∆x̂i

|∆xi|
|∆vi|

; rri =
∆vb.∆v̂i
∆xb.∆x̂i

|∆xi|
|∆vi|

(11)

Here the indexing ∆xa differs from that in Reference [3] as these differences are taken

along an index line, not around cell edges. For example for edge 1 ∆v1 = v1 − v2 where

the subscripts match the node labelling scheme in Figure 4. If this is cell (ix, iy) then

∆va is the same difference but for cell (ix+ 1, iy) and ∆va that for cell (ix− 1, iy).

When this viscosity is applied to MHD problems we simply replace the sound speed

by an effective fast speed cf defined through c2f = c2s + v2A where vA is the local Alfvén

speed.

6.3 Thermal conduction

The thermal conduction is user configurable to be either a flux limited Braginskii (Spitzer-

Harm) thermal flux or the simplified model from Hollweg used in AWSoM [2]. The

Braginskii thermal conduction model, in the presence of a magnetic field, in SWIFT is of

the form

ρ
∂ε

∂t
= ∇.

(
~k.∇T~n

)
+∇.

(
b2min

B2 + b2min
κ∇T

)

Project: PROGRESS
Deliverable: 2.3

Doc No: PROGRESS 2.3
Page: 18 of 33

where ~k = κ~n, ~n = ~B/(B2 + b2min)1/2 and κ = κ0T
5
2 . In the limit bmin → 0 this recovers

the Braginskii parallel thermal conductivity. Firstly the conduction is written in terms of

the heat flux vector ~q so that

~q =
(
~k.∇T

)
~n+

b2min
B2 + b2min

κ∇T

Then the specific energy density in each cell is updated using super-stepping [4]

It is possible that sufficient heating occurs so that qx exceeds the free streaming heat

flux qf = vthekBT . In this case the Braginskii flux needs to be limited. This is done by

calculating the components of the Braginskii (Spitzer-Harn) heat flux, e.g. qshx and the

free streaming limit qf and then finding the non-linear limited flux through

qnl =
1

(1/qsh+ 1/qf)

The heat flux must be limited not to qf = vthekBT but to qf = FLvthekBT where FL is a

flux limiter which is user configurable but is typically of order one.

As a simpler, and much faster, approximation Hollweg [5] suggested that for the solar

wind a quick-fix electron heat flux could be through taking q = αePev where αe is a

tunable parameter of order one. SWIFT can use either the Hollweg model or a flux

limited Braginkii conduction.

6.4 Centrifugal and geometry terms

The coupled AWSoM-SWIFT simulations are run in HGR coordinates so the centrfugal

and coriolis forces −ρ(Ω × (Ω × r + 2Ω × r) are added to the moment equation. In

addition to this spherical geometry terms are added. These arise due to the Lagrangian

step updating the scalar components of the vector v, i.e. vr, vθ, vφ in

v = vrr̂ + vθθ̂ + vφφ̂

So The Lagrangian equations require the expanion

Dv

Dt
= r̂

Dvr
Dt

+ vr
Dr̂

Dt
+ θ̂

Dvθ
Dt

+ vθ
Dθ̂

Dt
+ φ̂

Dvr
Dt

+ vφ
Dφ̂

Dt

Project: PROGRESS
Deliverable: 2.3

Doc No: PROGRESS 2.3
Page: 19 of 33

with the derivatives of the unit vectors specified in spherical coordiates in the usual way

[6].

7 Grid definitions

The mathematical and algorithm description in the previous section, along wth the main

LareXd reference [1] are sufficient to follow the implementation as in SWIFT except for the

grid definitions. This is best explained by stepping up through 1D then 2D and finally 3D

computational cells in Cartesian geometry and then the scale factors needed to implement

this on a spherical grid.. In 1D there are nx computational cells. These are labelled from

ix = 1 up to ix = nx. The variables used in the code are not defined at the same point

in a cell. We therefore need to be able to access the location of different parts of the grid

to set up the initial conditions. For this xbi is the position of the right hand boundary

of a cell and xci the position of the cell centre. This means that the left hand boundary

of the computational domain is at xb0. The width of each cell is dxbi and the distance

between cell centres is dxci. In this coordinate system the velocities are all defined at

the cell boundaries and all scalars (density, pressure, specific internal energy density) are

defined at cell centres. This is shown in Figure 7. The magnetic field components are

defined at different locations for each component. Bx is defined at the cell boundary (xbi)

while the By and Bz components are cell centred. Note that this staggering is essential

for the accuracy and conservation properties of SWIFT.

In 2D the velocities are defined at cell corners, the scalars and out of plane magnetic

field component at cell centres. The remaining magnetic field components are defined at

cell edges. This is shown in Figure 6.

The 3D Cartesian is a natural extension of this staggering and is shown in Figure 7.

Here scalars are volume centred, velocities are defined at cell vertices and magnetic field

components are defined as face centred. Gravity is a function only of the z coordinate

and is defined at the cell vertices, i.e. same location as the velocity.

Project: PROGRESS
Deliverable: 2.3

Doc No: PROGRESS 2.3
Page: 20 of 33

dxci

dxbi

(ρi, εi)

vivi−1

Figure 5: 1D Staggered Grid

vi−1,j vi,j

vi−1,j−1 vi,j−1

(ρi,j , εi,j , Bzi,j) Bxi,j

Byi,j

Figure 6: 2D Staggered Cartesian Grid

Bz

Bx

By

Vx

Vz
Vy

(ρ, ε)

Figure 7: 3D Staggered Cartesian Grid

Project: PROGRESS
Deliverable: 2.3

Doc No: PROGRESS 2.3
Page: 21 of 33

Figure 8: Scale factors used in SWIFT for spherical coordinates

To implement the numerical derivatives, volume averages and fluxes needed for a

Lagrangian-remap code [1] additional scale factors are required. These are shown in

Figure 8 using the variable names and notion of the SWIFT code.

8 Appendix

8.1 The build.sh script

#! /bin/bash

cd $(dirname ${BASH_SOURCE[0]})
dir=$(pwd)
cd ..

Build SWMF
##

cd ../SWMF*

Project: PROGRESS
Deliverable: 2.3

Doc No: PROGRESS 2.3
Page: 22 of 33

cluster=0
hostname -f | grep tinis > /dev/null && cluster=1

./Config.pl -uninstall

Always compile the HARMONICS tool in serial
./Config.pl -install -nompi -compiler=gfortran
compiler=gfortran

(cd share/Library/src
make LIB)
(cd util/DATAREAD/srcMagnetogram
make HARMONICS)

mv bin/HARMONICS.exe .

./Config.pl -uninstall

mkdir bin
mv HARMONICS.exe bin/

Now switch to parallel flags

if [$cluster -eq 0]; then
./Config.pl -install -compiler=gfortran
compiler=gfortran

else
module purge 2> /dev/null
module load intel impi HDF5 2> /dev/null
export I_MPI_F90=ifort
#./Config.pl -install -nompi -compiler=ifort
./Config.pl -install -compiler=mpiifort -hdf5
compiler=intel

fi

./Config.pl -v=Empty,SC/BATSRUS,IH/BATSRUS

./Config.pl -o=SC:u=ScChromo,e=MhdWavesPe

./Config.pl -o=IH:u=ScChromo,e=MhdWavesPe

./Config.pl -g=SC:4,8,4,2000,1,IH:4,4,4,4500,1

make SWMF

cd -

Build SWIFT
##

make cleanall
make -j COMPILER=$compiler

Project: PROGRESS
Deliverable: 2.3

Doc No: PROGRESS 2.3
Page: 23 of 33

make sdfutils

Build SPICE
##

cd ../SPICE
make
cd -

8.2 The setup.sh script

#! /bin/bash

Carrington rotation number to use
CR=2098

steady-state magnetogram file prefix
pre=mqs

Parse command-line arguments
usage() {

echo "Usage: $0 [-c <Carrington rotation>] [-r <rundir>]" 1>&2; exit 1;
}

while getopts ":c:r:" o; do
case "${o}" in

c) CR=${OPTARG} ;;
r) rundir=${OPTARG} ;;
*) usage ;;

esac
done

Setup SWMF
##

cd $(dirname ${BASH_SOURCE[0]})
dir=$(pwd)
topdir=$(pwd)/../..
cd -

Get magnetogram data
##

Download the next GONG file if not already done
cd $topdir/SWMF*
swmfdir=$(pwd)
[-d GONG_DATA] || mkdir GONG_DATA

Project: PROGRESS
Deliverable: 2.3

Doc No: PROGRESS 2.3
Page: 24 of 33

cd GONG_DATA

cd $dir
crdates=$(grep "^$CR" gongmonths.txt)
IFS=’, ’ read -r -a cra <<< "$crdates"
cd -

Mid date for Carrington rotation
tt=${cra[3]:0:6}${cra[4]:0:4}
if [${tt:0:2} -gt 50]; then

tt=19$tt
else

tt=20$tt
fi
dd=${tt:0:8}

ftp=https://gong.nso.edu/data/magmap
fitspath=$ftp/QR/$pre/${dd:0:6}/mr$pre${dd:2:6}/
fitsfile=mrpre{dd:2:6}t${tt:8:4}c${CR}_000.fits.gz
fullfitsfile=$fitspath/$fitsfile

if [! -e $fitsfile]; then
Download magnetogram file
curl -O $fullfitsfile

fi

Start date for Carrington rotation
t0=${cra[1]:0:6}${cra[2]:0:4}
if [${t0:0:2} -gt 50]; then

t0=19$t0
else

t0=20$t0
fi
d0=${t0:0:8}

Y=${t0:0:4}
M=${t0:4:2}
D=${t0:6:2}
h=${t0:8:2}
m=${t0:10:2}
date=${Y}_${M}_${D}_${h}_${m}

echo $date

Create run directory
##

cd $swmfdir
if ["$rundir"x = x]; then

rundir=$swmfdir/run_CR$CR

Project: PROGRESS
Deliverable: 2.3

Doc No: PROGRESS 2.3
Page: 25 of 33

else
if [! -d "$(dirname $rundir)"]; then

rundir=$swmfdir/$rundir
fi

fi

Make rundir, moving old one out of the way if necessary
cd $swmfdir
[-e $rundir] && mv $rundir $(date +"${rundir}_%F_%R")
make rundir RUNDIR=$rundir

Copy parameter files into the run directory
cd $dir
cp HARMONICS.in LAYOUT.in PARAM.in.awsomr run.sh $rundir/
cp -r ../scripts/spice_files $rundir/data

Adjust values in PARAM.in to match magnetogram
cd $rundir
sed "s/[0-9]*\([^0-9]*iYear\)/$Y\1/; s/[0-9]*\([^0-9]*iMonth\)/$M\1/; \

s/[0-9]*\([^0-9]*iDay\)/$D\1/; s/[0-9]*\([^0-9]*iHour\)/$h\1/; \
s/[0-9]*\([^0-9]*iMinute\)/$m\1/; s/[0-9]*\([^0-9]*iSecond\)/0\1/" \

PARAM.in.awsomr > PARAM.in

Make satellite trajectory files

earth
sed "s/.*\(#START\)/$Y-$M-$D $h:$m \1/; \

s/.*\(#FILENAME\)/earth_traj.dat \1/; \
s/.*\(#SATELLITE\)/EARTH \1/" data/input.txt > __tmp__

$topdir/SPICE/bin/cstates < __tmp__

stereo-a
sed "s/.*\(#START\)/$Y-$M-$D $h:$m \1/; \

s/.*\(#FILENAME\)/sta_traj.dat \1/; \
s/.*\(#SATELLITE\)/STEREO AHEAD \1/" data/input.txt > __tmp__

$topdir/SPICE/bin/cstates < __tmp__

stereo-b
sed "s/.*\(#START\)/$Y-$M-$D $h:$m \1/; \

s/.*\(#FILENAME\)/stb_traj.dat \1/; \
s/.*\(#SATELLITE\)/STEREO BEHIND \1/" data/input.txt > __tmp__

$topdir/SPICE/bin/cstates < __tmp__

rm __tmp__

Convert magnetogram to harmonics file

Project: PROGRESS
Deliverable: 2.3

Doc No: PROGRESS 2.3
Page: 26 of 33

module list > /dev/null 2>&1
if [$? -eq 0]; then

source /etc/profile.d/00-modulepath.sh 2> /dev/null
source /etc/profile.d/z00_lmod.sh 2> /dev/null
source /etc/profile.d/impi.sh 2> /dev/null

module purge 2> /dev/null
module load intel impi Python/2.7.12 2> /dev/null

fi
source $topdir/py/bin/activate > /dev/null 2>&1

$swmfdir/util/DATAREAD/srcMagnetogram/read_fits.py \
-Out new $swmfdir/GONG_DATA/$fitsfile

$swmfdir/bin/HARMONICS.exe

echo "Start date YM${D}t$h$m" at $(date)
echo ‘pwd‘
echo CR$CR > start.txt

8.3 The autosubmit predictive.sh script

#! /bin/bash

Carrington rotation number or date to start at ("now" for current time)
Date is used if both specified
CR=2190
start_date="2017-10-01 12:00:00"
start_date="now"
Date format (only needed for BSD systems)
date_format="%Y-%m-%d %H:%M:%S"

Time interval between updates (in seconds)
interval=$((60*60*24))

time-accurate magnetogram file prefix
pre=bqs

Setup SWMF
##

cd $(dirname ${BASH_SOURCE[0]})
dir=$(pwd)
topdir=$dir/../..
cd -

Get magnetogram data
##

Download the next GONG file if not already done

Project: PROGRESS
Deliverable: 2.3

Doc No: PROGRESS 2.3
Page: 27 of 33

cd $topdir/SWMF*
swmfdir=$(pwd)
[-d GONG_DATA] || mkdir GONG_DATA
cd GONG_DATA

Check for GNU or BSD version of date command
date -j > /dev/null 2>&1
gnu=$?
if [$gnu -eq 1]; then

arg="-d @"
else

arg="-jf %s "
fi

prev=previous_gong_file.txt
#ftp=ftp://gong2.nso.edu
ftp=https://gong.nso.edu/data/magmap

if [-e $prev]; then
prev_date=$(cat $prev)
need_date=$((prev_date+interval))
start_date=

else
if ["$start_date"x != x]; then

Use specified start date
if ["$start_date" = "now"]; then

need_date=$(date +%s)
else

if [$gnu -eq 1]; then
need_date=$(date -d "$start_date" +%s)

else
need_date=$(date -jf "%Y-%m-%d %H:%M:%S" "$start_date" +%s)

fi
fi

else
Use Carrington rotation instead

cd $dir
crdates=$(grep "^$CR" gongmonths.txt)
IFS=’, ’ read -r -a cra <<< "$crdates"
cd -

Start date for Carrington rotation
t0=${cra[1]:0:6}${cra[2]:0:4}
if [${t0:0:2} -gt 50]; then

t0=19$t0
else

t0=20$t0
fi
d0=${t0:0:8}

Project: PROGRESS
Deliverable: 2.3

Doc No: PROGRESS 2.3
Page: 28 of 33

dt="$d0 ${t0:8:2}:${t0:10:2}:00"
if [$gnu -eq 1]; then

need_date=$(date -d "$dt" +%s)
else

need_date=$(date -jf "%Y%m%d %H:%M:%S" "$dt" +%s)
fi

fi

prev_date=$((need_date - interval))
fi

got_date=-1
if [$need_date -gt 0]; then

Check for files within half-interval of the start time
sec=$((need_date - interval/2))
d1=$(date argsec +"%Y%m%d")
sec=$((need_date + interval/2))
d2=$(date argsec +"%Y%m%d")
got_date=-1
mindt=$((2*interval))
fitsfile=""
for f in $(ls mr$pre${d1:2}t* mr$pre${d0:2}t* \

mrpre{d2:2}t* 2>/dev/null | sort -u); do
if [${f:5:2} -gt 50]; then

ml=19
else

ml=20
fi

dt="ml{f:5:6} ${f:12:2}:${f:14:2}:00"
if [$gnu -eq 1]; then

sec=$(date -d "$dt" +%s)
else

sec=$(date -jf "%Y%m%d %H:%M:%S" "$dt" +%s)
fi

ds=$((sec-need_date))
if [$ds -lt 0]; then

ds=$((-ds))
fi

Find file with minimum time difference from starting time
if [$ds -lt $mindt -a $sec -gt $prev_date]; then

got_date=$sec
mindt=$ds
fitsfile=$f

fi
done

Project: PROGRESS
Deliverable: 2.3

Doc No: PROGRESS 2.3
Page: 29 of 33

If minimum time difference is greater than 1 hour, need to
download file
if [$mindt -gt $((55*60))]; then

got_date=-1
else

need_date=-1
fi

fi

if [$need_date -gt 0]; then
sec1=$((need_date - interval))
sec2=$((need_date + interval))
d0=$(date argneed_date +"%Y%m%d")
d1=$(date argsec1 +"%Y%m%d")
d2=$(date argsec2 +"%Y%m%d")
got_date=-1
mindt=$((2*interval))
fitsfile=""
fullfitsfile=""
echo future
for dd in $(echo -e "$d0\n$d1\n$d2" | sort -u); do

echo $dd
fitspath=$ftp/QR/$pre/${dd:0:6}/mr$pre${dd:2:6}/
echo $fitspath
if ["${ftp:0:1}" = "f"]; then

flist=$(curl --list-only -s $fitspath)
else

flist=$(curl --list-only -s $fitspath | grep href | grep fits \
| sed ’s/.*href=//’ | cut -f2 -d\")

fi
for f in $flist; do

if [${f:5:2} -gt 50]; then
ml=19

else
ml=20

fi

dt="ml{f:5:6} ${f:12:2}:${f:14:2}:00"
if [$gnu -eq 1]; then

sec=$(date -d "$dt" +%s)
else

sec=$(date -jf "%Y%m%d %H:%M:%S" "$dt" +%s)
fi

ds=$((sec-need_date))
if [$ds -lt 0]; then

ds=$((-ds))
fi

echo "found $f (ds $ds)"

Project: PROGRESS
Deliverable: 2.3

Doc No: PROGRESS 2.3
Page: 30 of 33

Find file with minimum time difference from starting time
if [$ds -lt $mindt -a $sec -gt $prev_date]; then

got_date=$sec
mindt=$ds
fitsfile=$f
fullfitsfile=$fitspath/$fitsfile

fi
done

done

if [$mindt -gt $((60*30)) -a "$start_date" != "now"]; then
got_date=-1

else
Download magnetogram file
curl -O $fullfitsfile
echo curl -O $fullfitsfile

fi
fi

if [$got_date -lt 0]; then
echo exiting
exit

fi

Get date information from the magnetogram file

gzip -dc $fitsfile | head -1 | strings | tr ’=’ ’\n’ > head.txt
date=$(grep -A1 DATE-OBS head.txt | tail -1 | cut -f2 -d\’)
time=$(grep -A1 TIME-OBS head.txt | tail -1 | cut -f2 -d\’)
phishift=$(grep -A1 MAPEDGE head.txt | tail -1 | awk ’{print$1}’)
rm head.txt

Y=${date:0:4}
M=${date:5:2}
D=${date:8:2}
h=${time:0:2}
m=${time:3:2}
date=${Y}_${M}_${D}_${h}_${m}

echo $got_date > $prev

Create run directory
##

rundir=$swmfdir/$(date arggot_date +"run_%Y%m%dt%H%M")

Make rundir, moving old one out of the way if necessary
cd $swmfdir

Project: PROGRESS
Deliverable: 2.3

Doc No: PROGRESS 2.3
Page: 31 of 33

[-e $rundir] && mv $rundir $(date +"${rundir}_%F_%R")
make rundir RUNDIR=$rundir

Copy parameter files into the run directory
cd $dir
cp HARMONICS.in LAYOUT.in PARAM.in.awsomr $rundir/
cp -r ../scripts/spice_files $rundir/data
cp run_pred.sh $rundir/run.sh

Adjust values in PARAM.in to match magnetogram
cd $rundir
sed "s/[0-9]*\([^0-9]*iYear\)/$Y\1/; s/[0-9]*\([^0-9]*iMonth\)/$M\1/; \

s/[0-9]*\([^0-9]*iDay\)/$D\1/; s/[0-9]*\([^0-9]*iHour\)/$h\1/; \
s/[0-9]*\([^0-9]*iMinute\)/$m\1/; s/[0-9]*\([^0-9]*iSecond\)/0\1/; \
s/^[0-9\.]*\(.*PhiShift\)/$phishift\1/" PARAM.in.awsomr > PARAM.in

sed "s/^[0-9\.]*\(.*tSimulationMax\)/0.\1/" PARAM.in.awsomr > __tmp__
mv __tmp__ PARAM.in.awsomr

Make satellite trajectory files

earth
sed "s/.*\(#START\)/$Y-$M-$D $h:$m \1/; \

s/.*\(#FILENAME\)/earth_traj.dat \1/; \
s/.*\(#SATELLITE\)/EARTH \1/" data/input.txt > __tmp__

$topdir/SPICE/bin/cstates < __tmp__

stereo-a
sed "s/.*\(#START\)/$Y-$M-$D $h:$m \1/; \

s/.*\(#FILENAME\)/sta_traj.dat \1/; \
s/.*\(#SATELLITE\)/STEREO AHEAD \1/" data/input.txt > __tmp__

$topdir/SPICE/bin/cstates < __tmp__

stereo-b
sed "s/.*\(#START\)/$Y-$M-$D $h:$m \1/; \

s/.*\(#FILENAME\)/stb_traj.dat \1/; \
s/.*\(#SATELLITE\)/STEREO BEHIND \1/" data/input.txt > __tmp__

$topdir/SPICE/bin/cstates < __tmp__

rm __tmp__

Convert magnetogram to harmonics file

module list > /dev/null 2>&1
if [$? -eq 0]; then

source /etc/profile.d/00-modulepath.sh 2> /dev/null
source /etc/profile.d/z00_lmod.sh 2> /dev/null

Project: PROGRESS
Deliverable: 2.3

Doc No: PROGRESS 2.3
Page: 32 of 33

source /etc/profile.d/impi.sh 2> /dev/null

module purge 2> /dev/null
module load intel impi Python/2.7.12 2> /dev/null

fi
source $topdir/py/bin/activate > /dev/null 2>&1

$swmfdir/util/DATAREAD/srcMagnetogram/read_fits.py \
-Out new $swmfdir/GONG_DATA/$fitsfile

$swmfdir/bin/HARMONICS.exe

echo "Start date YM${D}t$h$m" at $(date)
echo ‘pwd‘
echo YM${D}t$h$m > start.txt

job=$(sbatch --parsable run.sh)
echo $job > ../prev_job.txt

Project: PROGRESS
Deliverable: 2.3

Doc No: PROGRESS 2.3
Page: 33 of 33

References

[1] T D Arber, A W Longbottom, C L Gerrard, and A M Milne. A Staggered Grid, La-

grangian–Eulerian Remap Code for 3-D MHD Simulations. Journal of Computational

Physics, 171(1):151–181, 2001.

[2] B van der Holst, Igor V Sokolov, X Meng, Meng Jin, Iv W B Manchester, G Tóth,

and Tamas I Gombosi. ALFVÉN WAVE SOLAR MODEL (AWSoM): CORONAL

HEATING. Astrophysical Journal, 782(2):81, 2014.

[3] E. J. Caramana et al., J. Comp. Phys. 144 70 (1998)

[4] C. Meyer, D. Balsara and T. Aslam, MNRAS 422 2101 (2012)

[5] J. V. Hollweg, Reviews of Geophysics and Space Physics 16, No. 4, 689 (1978)

[6] J. D. Huba, NRL Plasma Formulary. Washington DC: Naval Research Laboratory

(1998)

